# ResNet 系列 ----- ## 目录 - [1. 模型介绍](#1) - [1.1 模型简介](#1.1) - [1.2 模型指标](#1.2) - [1.3 Benchmark](#1.3) - [1.3.1 基于 V100 GPU 的预测速度](#1.3.1) - [1.3.2 基于 T4 GPU 的预测速度](#1.3.2) - [2. 模型快速体验](#2) - [2.1 安装 paddleclas](#2.1) - [2.2 预测](#2.2) - [3. 模型训练、评估和预测](#3) - [3.1 环境配置](#3.1) - [3.2 数据准备](#3.2) - [3.3 模型训练](#3.3) - [3.4 模型评估](#3.4) - [3.5 模型预测](#3.5) - [4. 模型推理部署](#4) - [4.1 推理模型准备](#4.1) - [4.1.1 基于训练得到的权重导出 inference 模型](#4.1.1) - [4.1.2 直接下载 inference 模型](#4.1.2) - [4.2 基于 Python 预测引擎推理](#4.2) - [4.2.1 预测单张图像](#4.2.1) - [4.2.2 基于文件夹的批量预测](#4.2.2) - [4.3 基于 C++ 预测引擎推理](#4.3) - [4.4 服务化部署](#4.4) - [4.5 端侧部署](#4.5) - [4.6 Paddle2ONNX 模型转换与预测](#4.6) ## 1. 模型介绍 ### 1.1 模型简介 ResNet 系列模型是在 2015 年提出的,一举在 ILSVRC2015 比赛中取得冠军,top5 错误率为 3.57%。该网络创新性的提出了残差结构,通过堆叠多个残差结构从而构建了 ResNet 网络。实验表明使用残差块可以有效地提升收敛速度和精度。 斯坦福大学的 Joyce Xu 将 ResNet 称为「真正重新定义了我们看待神经网络的方式」的三大架构之一。由于 ResNet 卓越的性能,越来越多的来自学术界和工业界学者和工程师对其结构进行了改进,比较出名的有 Wide-ResNet, ResNet-vc, ResNet-vd, Res2Net 等,其中 ResNet-vc 与 ResNet-vd 的参数量和计算量与 ResNet 几乎一致,所以在此我们将其与 ResNet 统一归为 ResNet 系列。 PaddleClas 提供的 ResNet 系列的模型包括 ResNet50,ResNet50_vd,ResNet50_vd_ssld,ResNet200_vd 等 16 个预训练模型。在训练层面上,ResNet 的模型采用了训练 ImageNet 的标准训练流程,而其余改进版模型采用了更多的训练策略,如 learning rate 的下降方式采用了 cosine decay,引入了 label smoothing 的标签正则方式,在数据预处理加入了 mixup 的操作,迭代总轮数从 120 个 epoch 增加到 200 个 epoch。 其中,后缀使用`_ssld`的模型采用了 SSLD 知识蒸馏,保证模型结构不变的情况下,进一步提升了模型的精度。 ### 1.2 模型指标 | Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPs
(G) | Params
(M) | |:--:|:--:|:--:|:--:|:--:|:--:|:--:| | ResNet18 | 0.710 | 0.899 | 0.696 | 0.891 | 3.660 | 11.690 | | ResNet18_vd | 0.723 | 0.908 | | | 4.140 | 11.710 | | ResNet34 | 0.746 | 0.921 | 0.732 | 0.913 | 7.360 | 21.800 | | ResNet34_vd | 0.760 | 0.930 | | | 7.390 | 21.820 | | ResNet34_vd_ssld | 0.797 | 0.949 | | | 7.390 | 21.820 | | ResNet50 | 0.765 | 0.930 | 0.760 | 0.930 | 8.190 | 25.560 | | ResNet50_vc | 0.784 | 0.940 | | | 8.670 | 25.580 | | ResNet50_vd | 0.791 | 0.944 | 0.792 | 0.946 | 8.670 | 25.580 | | ResNet101 | 0.776 | 0.936 | 0.776 | 0.938 | 15.520 | 44.550 | | ResNet101_vd | 0.802 | 0.950 | | | 16.100 | 44.570 | | ResNet152 | 0.783 | 0.940 | 0.778 | 0.938 | 23.050 | 60.190 | | ResNet152_vd | 0.806 | 0.953 | | | 23.530 | 60.210 | | ResNet200_vd | 0.809 | 0.953 | | | 30.530 | 74.740 | | ResNet50_vd_ssld | 0.830 | 0.964 | | | 8.670 | 25.580 | | Fix_ResNet50_vd_ssld | 0.840 | 0.970 | | | 17.696 | 25.580 | | ResNet101_vd_ssld | 0.837 | 0.967 | | | 16.100 | 44.570 | **备注:** `Fix_ResNet50_vd_ssld` 是固定 `ResNet50_vd_ssld` 除 FC 层外所有的网络参数,在 320x320 的图像输入分辨率下,基于 ImageNet-1k 数据集微调得到。 ## 1.3 Benchmark ### 1.3.1 基于 V100 GPU 的预测速度 | Models | Size | Latency(ms)
bs=1 | Latency(ms)
bs=4 | Latency(ms)
bs=8 | |:--:|:--:|:--:|:--:|:--:| | ResNet18 | 224 | 1.22 | 2.19 | 3.63 | | ResNet18_vd | 224 | 1.26 | 2.28 | 3.89 | | ResNet34 | 224 | 1.97 | 3.25 | 5.70 | | ResNet34_vd | 224 | 2.00 | 3.28 | 5.84 | | ResNet34_vd_ssld | 224 | 2.00 | 3.26 | 5.85 | | ResNet50 | 224 | 2.54 | 4.79 | 7.40 | | ResNet50_vc | 224 | 2.57 | 4.83 | 7.52 | | ResNet50_vd | 224 | 2.60 | 4.86 | 7.63 | | ResNet101 | 224 | 4.37 | 8.18 | 12.38 | | ResNet101_vd | 224 | 4.43 | 8.25 | 12.60 | | ResNet152 | 224 | 6.05 | 11.41 | 17.33 | | ResNet152_vd | 224 | 6.11 | 11.51 | 17.59 | | ResNet200_vd | 224 | 7.70 | 14.57 | 22.16 | | ResNet50_vd_ssld | 224 | 2.59 | 4.87 | 7.62 | | ResNet101_vd_ssld | 224 | 4.43 | 8.25 | 12.58 | **备注:** 精度类型为 FP32,推理过程使用 TensorRT。 ### 1.3.2 基于 T4 GPU 的预测速度 | Models | Size | Latency(ms)
FP16
bs=1 | Latency(ms)
FP16
bs=4 | Latency(ms)
FP16
bs=8 | Latency(ms)
FP32
bs=1 | Latency(ms)
FP32
bs=4 | Latency(ms)
FP32
bs=8 | |:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:| | ResNet18 | 224 | 1.3568 | 2.5225 | 3.61904 | 1.45606 | 3.56305 | 6.28798 | | ResNet18_vd | 224 | 1.39593 | 2.69063 | 3.88267 | 1.54557 | 3.85363 | 6.88121 | | ResNet34 | 224 | 2.23092 | 4.10205 | 5.54904 | 2.34957 | 5.89821 | 10.73451 | | ResNet34_vd | 224 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 | | ResNet34_vd_ssld | 224 | 2.23992 | 4.22246 | 5.79534 | 2.43427 | 6.22257 | 11.44906 | | ResNet50 | 224 | 2.63824 | 4.63802 | 7.02444 | 3.47712 | 7.84421 | 13.90633 | | ResNet50_vc | 224 | 2.67064 | 4.72372 | 7.17204 | 3.52346 | 8.10725 | 14.45577 | | ResNet50_vd | 224 | 2.65164 | 4.84109 | 7.46225 | 3.53131 | 8.09057 | 14.45965 | | ResNet101 | 224 | 5.04037 | 7.73673 | 10.8936 | 6.07125 | 13.40573 | 24.3597 | | ResNet101_vd | 224 | 5.05972 | 7.83685 | 11.34235 | 6.11704 | 13.76222 | 25.11071 | | ResNet152 | 224 | 7.28665 | 10.62001 | 14.90317 | 8.50198 | 19.17073 | 35.78384 | | ResNet152_vd | 224 | 7.29127 | 10.86137 | 15.32444 | 8.54376 | 19.52157 | 36.64445 | | ResNet200_vd | 224 | 9.36026 | 13.5474 | 19.0725 | 10.80619 | 25.01731 | 48.81399 | | ResNet50_vd_ssld | 224 | 2.65164 | 4.84109 | 7.46225 | 3.53131 | 8.09057 | 14.45965 | | Fix_ResNet50_vd_ssld_v2 | 320 | 3.42818 | 7.51534 | 13.19370 | 5.07696 | 14.64218 | 27.01453 | | ResNet101_vd_ssld | 224 | 5.05972 | 7.83685 | 11.34235 | 6.11704 | 13.76222 | 25.11071 | **备注:** 推理过程使用 TensorRT。 ## 2. 模型快速体验 ### 2.1 安装 paddleclas 使用如下命令快速安装 paddleclas ``` pip3 install paddleclas ``` ### 2.2 预测 * 在命令行中使用 ResNet50 的权重快速预测 ```bash paddleclas --model_name=ResNet50 --infer_imgs="docs/images/inference_deployment/whl_demo.jpg" ``` 结果如下: ``` >>> result filename: docs/images/inference_deployment/whl_demo.jpg, top-1, class_ids: [8, 7, 86, 82, 80], scores: [0.97968, 0.02028, 3e-05, 1e-05, 0.0], label_names: ['hen', 'cock', 'partridge', 'ruffed grouse, partridge, Bonasa umbellus', 'black grouse'] Predict complete! ``` **备注**: 更换 ResNet 的其他 scale 的模型时,只需替换 `model_name`,如将此时的模型改为 `ResNet_x2_0` 时,只需要将 `--model_name=ResNet50` 改为 `--model_name=ResNet_x2_0` 即可。 * 在 Python 代码中预测 ```python from paddleclas import PaddleClas clas = PaddleClas(model_name='ResNet50') infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg' result = clas.predict(infer_imgs) print(next(result)) ``` **备注**:`PaddleClas.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭 代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果。返回结果示例如下: ``` >>> result filename: docs/images/inference_deployment/whl_demo.jpg, top-1, class_ids: [8, 7, 86, 82, 80], scores: [0.97968, 0.02028, 3e-05, 1e-05, 0.0], label_names: ['hen', 'cock', 'partridge', 'ruffed grouse, partridge, Bonasa umbellus', 'black grouse'] ``` ## 3. 模型训练、评估和预测 ### 3.1 环境配置 * 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。 ### 3.2 数据准备 请在[ImageNet 官网](https://www.image-net.org/)准备 ImageNet-1k 相关的数据。 进入 PaddleClas 目录。 ``` cd path_to_PaddleClas ``` 进入 `dataset/` 目录,将下载好的数据命名为 `ILSVRC2012` ,存放于此。 `ILSVRC2012` 目录中具有以下数据: ``` ├── train │   ├── n01440764 │   │   ├── n01440764_10026.JPEG │   │   ├── n01440764_10027.JPEG ├── train_list.txt ... ├── val │   ├── ILSVRC2012_val_00000001.JPEG │   ├── ILSVRC2012_val_00000002.JPEG ├── val_list.txt ``` 其中 `train/` 和 `val/` 分别为训练集和验证集。`train_list.txt` 和 `val_list.txt` 分别为训练集和验证集的标签文件。 **备注:** * 关于 `train_list.txt`、`val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明) 。 ### 3.3 模型训练 在 `ppcls/configs/ImageNet/ResNet/ResNet50.yaml` 中提供了 ResNet50 训练配置,可以通过如下脚本启动训练: ```shell export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml ``` **备注:** * 当前精度最佳的模型会保存在 `output/ResNet50/best_model.pdparams` ### 3.4 模型评估 训练好模型之后,可以通过以下命令实现对模型指标的评估。 ```bash python3 tools/eval.py \ -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml \ -o Global.pretrained_model=output/ResNet50/best_model ``` 其中 `-o Global.pretrained_model="output/ResNet50/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。 ### 3.5 模型预测 模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测: ```python python3 tools/infer.py \ -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml \ -o Global.pretrained_model=output/ResNet50/best_model ``` 输出结果如下: ``` [{'class_ids': [8, 7, 86, 82, 80], 'scores': [0.97968, 0.02028, 3e-05, 1e-05, 0.0], 'file_name': 'docs/images/inference_deployment/whl_demo.jpg', 'label_names': ['hen', 'cock', 'partridge', 'ruffed grouse, partridge, Bonasa umbellus', 'black grouse']}] ``` **备注:** * 这里`-o Global.pretrained_model="output/ResNet50/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。 * 默认是对 `docs/images/inference_deployment/whl_demo.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。 * 默认输出的是 Top-5 的值,如果希望输出 Top-k 的值,可以指定`-o Infer.PostProcess.topk=k`,其中,`k` 为您指定的值。 ## 4. 模型推理部署 ### 4.1 推理模型准备 Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。 当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。 ### 4.1.1 基于训练得到的权重导出 inference 模型 此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型: ```bash python3 tools/export_model.py \ -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml \ -o Global.pretrained_model=output/ResNet50/best_model \ -o Global.save_inference_dir=deploy/models/ResNet50_infer ``` 执行完该脚本后会在 `deploy/models/` 下生成 `ResNet50_infer` 文件夹,`models` 文件夹下应有如下文件结构: ``` ├── ResNet50_infer │ ├── inference.pdiparams │ ├── inference.pdiparams.info │ └── inference.pdmodel ``` ### 4.1.2 直接下载 inference 模型 [4.1.1 小节](#4.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。 ``` cd deploy/models # 下载 inference 模型并解压 wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_infer.tar && tar -xf ResNet50_infer.tar ``` 解压完毕后,`models` 文件夹下应有如下文件结构: ``` ├── ResNet50_infer │ ├── inference.pdiparams │ ├── inference.pdiparams.info │ └── inference.pdmodel ``` ### 4.2 基于 Python 预测引擎推理 #### 4.2.1 预测单张图像 返回 `deploy` 目录: ``` cd ../ ``` 运行下面的命令,对图像 `./images/ImageNet/ILSVRC2012_val_00000010.jpeg` 进行分类。 ```shell # 使用下面的命令使用 GPU 进行预测 python3 python/predict_cls.py -c configs/inference_cls.yaml -o Global.inference_model_dir=models/ResNet50_infer # 使用下面的命令使用 CPU 进行预测 python3 python/predict_cls.py -c configs/inference_cls.yaml -o Global.inference_model_dir=models/ResNet50_infer -o Global.use_gpu=False ``` 输出结果如下。 ``` ILSVRC2012_val_00000010.jpeg: class id(s): [153, 332, 229, 204, 265], score(s): [0.41, 0.39, 0.05, 0.04, 0.04], label_name(s): ['Maltese dog, Maltese terrier, Maltese', 'Angora, Angora rabbit', 'Old English sheepdog, bobtail', 'Lhasa, Lhasa apso', 'toy poodle'] ``` #### 4.2.2 基于文件夹的批量预测 如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。 ```shell # 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False python3 python/predict_cls.py -c configs/inference_cls.yaml -o Global.inference_model_dir=models/ResNet50_infer -o Global.infer_imgs=images/ImageNet/ ``` 终端中会输出该文件夹内所有图像的分类结果,如下所示。 ``` ILSVRC2012_val_00000010.jpeg: class id(s): [153, 332, 229, 204, 265], score(s): [0.41, 0.39, 0.05, 0.04, 0.04], label_name(s): ['Maltese dog, Maltese terrier, Maltese', 'Angora, Angora rabbit', 'Old English sheepdog, bobtail', 'Lhasa, Lhasa apso', 'toy poodle'] ILSVRC2012_val_00010010.jpeg: class id(s): [902, 626, 531, 487, 761], score(s): [0.47, 0.10, 0.05, 0.04, 0.03], label_name(s): ['whistle', 'lighter, light, igniter, ignitor', 'digital watch', 'cellular telephone, cellular phone, cellphone, cell, mobile phone', 'remote control, remote'] ILSVRC2012_val_00020010.jpeg: class id(s): [178, 211, 246, 236, 210], score(s): [1.00, 0.00, 0.00, 0.00, 0.00], label_name(s): ['Weimaraner', 'vizsla, Hungarian pointer', 'Great Dane', 'Doberman, Doberman pinscher', 'German short-haired pointer'] ILSVRC2012_val_00030010.jpeg: class id(s): [80, 23, 83, 93, 136], score(s): [1.00, 0.00, 0.00, 0.00, 0.00], label_name(s): ['black grouse', 'vulture', 'prairie chicken, prairie grouse, prairie fowl', 'hornbill', 'European gallinule, Porphyrio porphyrio'] ``` ### 4.3 基于 C++ 预测引擎推理 PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。 ### 4.4 服务化部署 Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。 PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。 ### 4.5 端侧部署 Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。 PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。 ### 4.6 Paddle2ONNX 模型转换与预测 Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。 PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。