# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.insert(0, ".") import tools.infer.utils as utils import numpy as np import cv2 import time from paddle.inference import Config from paddle.inference import create_predictor def create_paddle_predictor(args): config = Config(args.model_file, args.params_file) if args.use_gpu: config.enable_use_gpu(args.gpu_mem, 0) else: config.disable_gpu() if args.enable_mkldnn: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() config.disable_glog_info() config.switch_ir_optim(args.ir_optim) # default true if args.use_tensorrt: config.enable_tensorrt_engine( precision_mode=Config.Precision.Half if args.use_fp16 else Config.Precision.Float32, max_batch_size=args.batch_size) config.enable_memory_optim() # use zero copy config.switch_use_feed_fetch_ops(False) predictor = create_predictor(config) return predictor def main(args): if not args.enable_benchmark: assert args.batch_size == 1 assert args.use_fp16 is False else: assert args.use_gpu is True assert args.model is not None # HALF precission predict only work when using tensorrt if args.use_fp16 is True: assert args.use_tensorrt is True predictor = create_paddle_predictor(args) input_names = predictor.get_input_names() input_tensor = predictor.get_input_handle(input_names[0]) output_names = predictor.get_output_names() output_tensor = predictor.get_output_handle(output_names[0]) test_num = 500 test_time = 0.0 if not args.enable_benchmark: # for PaddleHubServing if args.hubserving: img = args.image_file # for predict only else: img = cv2.imread(args.image_file)[:, :, ::-1] assert img is not None, "Error in loading image: {}".format( args.image_file) inputs = utils.preprocess(img, args) inputs = np.expand_dims( inputs, axis=0).repeat( args.batch_size, axis=0).copy() input_tensor.copy_from_cpu(inputs) predictor.run() output = output_tensor.copy_to_cpu() return utils.postprocess(output, args) else: for i in range(0, test_num + 10): inputs = np.random.rand(args.batch_size, 3, 224, 224).astype(np.float32) start_time = time.time() input_tensor.copy_from_cpu(inputs) predictor.run() output = output_tensor.copy_to_cpu() output = output.flatten() if i >= 10: test_time += time.time() - start_time time.sleep(0.01) # sleep for T4 GPU fp_message = "FP16" if args.use_fp16 else "FP32" trt_msg = "using tensorrt" if args.use_tensorrt else "not using tensorrt" print("{0}\t{1}\t{2}\tbatch size: {3}\ttime(ms): {4}".format( args.model, trt_msg, fp_message, args.batch_size, 1000 * test_time / test_num)) if __name__ == "__main__": args = utils.parse_args() classes, scores = main(args) print("Current image file: {}".format(args.image_file)) print("\ttop-1 class: {0}".format(classes[0])) print("\ttop-1 score: {0}".format(scores[0]))