# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys sys.path.insert(0, ".") import time from paddlehub.utils.log import logger from paddlehub.module.module import moduleinfo, serving import cv2 import numpy as np import paddle.nn as nn from tools.infer.predict import Predictor from tools.infer.utils import b64_to_np, postprocess from deploy.hubserving.clas.params import read_params @moduleinfo( name="clas_system", version="1.0.0", summary="class system service", author="paddle-dev", author_email="paddle-dev@baidu.com", type="cv/class") class ClasSystem(nn.Layer): def __init__(self, use_gpu=None, enable_mkldnn=None): """ initialize with the necessary elements """ cfg = read_params() if use_gpu is not None: cfg.use_gpu = use_gpu if enable_mkldnn is not None: cfg.enable_mkldnn = enable_mkldnn cfg.hubserving = True cfg.enable_benchmark = False self.args = cfg if cfg.use_gpu: try: _places = os.environ["CUDA_VISIBLE_DEVICES"] int(_places[0]) print("Use GPU, GPU Memery:{}".format(cfg.gpu_mem)) print("CUDA_VISIBLE_DEVICES: ", _places) except: raise RuntimeError( "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id." ) else: print("Use CPU") print("Enable MKL-DNN") if enable_mkldnn else None self.predictor = Predictor(self.args) def predict(self, batch_input_data, top_k=1): assert isinstance( batch_input_data, np.ndarray), "The input data is inconsistent with expectations." starttime = time.time() batch_outputs = self.predictor.predict(batch_input_data) elapse = time.time() - starttime batch_result_list = postprocess(batch_outputs, top_k) return {"prediction": batch_result_list, "elapse": elapse} @serving def serving_method(self, images, revert_params, **kwargs): """ Run as a service. """ input_data = b64_to_np(images, revert_params) results = self.predict(batch_input_data=input_data, **kwargs) return results