# global configs Global: checkpoints: null pretrained_model: "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/vehicle_cls_ResNet50_CompCars_v1.2_pretrained.pdparams" output_dir: "./output_vehicle_cls_prune/" device: "gpu" save_interval: 1 eval_during_train: True eval_interval: 1 epochs: 160 print_batch_step: 10 use_visualdl: False # used for static mode and model export image_shape: [3, 224, 224] save_inference_dir: "./inference" Slim: prune: name: fpgm pruned_ratio: 0.3 # model architecture Arch: name: "RecModel" infer_output_key: "features" infer_add_softmax: False Backbone: name: "ResNet50_last_stage_stride1" pretrained: True BackboneStopLayer: name: "adaptive_avg_pool2d_0" Neck: name: "VehicleNeck" in_channels: 2048 out_channels: 512 Head: name: "ArcMargin" embedding_size: 512 class_num: 431 margin: 0.15 scale: 32 # loss function config for traing/eval process Loss: Train: - CELoss: weight: 1.0 - SupConLoss: weight: 1.0 views: 2 Eval: - CELoss: weight: 1.0 Optimizer: name: Momentum momentum: 0.9 lr: name: Cosine learning_rate: 0.01 regularizer: name: 'L2' coeff: 0.0005 # data loader for train and eval DataLoader: Train: dataset: name: "CompCars" image_root: "./dataset/CompCars/image/" label_root: "./dataset/CompCars/label/" bbox_crop: True cls_label_path: "./dataset/CompCars/train_test_split/classification/train_label.txt" transform_ops: - ResizeImage: size: 224 - RandFlipImage: flip_code: 1 - AugMix: prob: 0.5 - NormalizeImage: scale: 0.00392157 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - RandomErasing: EPSILON: 0.5 sl: 0.02 sh: 0.4 r1: 0.3 mean: [0., 0., 0.] sampler: name: DistributedRandomIdentitySampler batch_size: 128 num_instances: 2 drop_last: False shuffle: True loader: num_workers: 8 use_shared_memory: True Eval: dataset: name: "CompCars" image_root: "./dataset/CompCars/image/" label_root: "./dataset/CompCars/label/" cls_label_path: "./dataset/CompCars/train_test_split/classification/test_label.txt" bbox_crop: True transform_ops: - ResizeImage: size: 224 - NormalizeImage: scale: 0.00392157 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 128 drop_last: False shuffle: False loader: num_workers: 8 use_shared_memory: True Metric: Train: - TopkAcc: topk: [1, 5] Eval: - TopkAcc: topk: [1, 5]