#!/bin/bash source test_tipc/common_func.sh FILENAME=$1 dataline=$(awk 'NR==1, NR==16{print}' $FILENAME) # parser params IFS=$'\n' lines=(${dataline}) # parser cpp inference model model_name=$(func_parser_value "${lines[1]}") cpp_infer_type=$(func_parser_value "${lines[2]}") cpp_infer_model_dir=$(func_parser_value "${lines[3]}") cpp_det_infer_model_dir=$(func_parser_value "${lines[4]}") cpp_infer_is_quant=$(func_parser_value "${lines[7]}") # parser cpp inference inference_cmd=$(func_parser_value "${lines[8]}") cpp_use_gpu_list=$(func_parser_value "${lines[9]}") cpp_use_mkldnn_list=$(func_parser_value "${lines[10]}") cpp_cpu_threads_list=$(func_parser_value "${lines[11]}") cpp_batch_size_list=$(func_parser_value "${lines[12]}") cpp_use_trt_list=$(func_parser_value "${lines[13]}") cpp_precision_list=$(func_parser_value "${lines[14]}") cpp_image_dir_value=$(func_parser_value "${lines[15]}") cpp_benchmark_value=$(func_parser_value "${lines[16]}") LOG_PATH="./test_tipc/output" mkdir -p ${LOG_PATH} status_log="${LOG_PATH}/results_cpp.log" generate_yaml_cmd="python3 test_tipc/generate_cpp_yaml.py" function func_shitu_cpp_inference(){ IFS='|' _script=$1 _model_dir=$2 _log_path=$3 _img_dir=$4 _flag_quant=$5 # inference for use_gpu in ${cpp_use_gpu_list[*]}; do if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then continue fi for threads in ${cpp_cpu_threads_list[*]}; do for batch_size in ${cpp_batch_size_list[*]}; do precision="fp32" if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then precison="int8" fi _save_log_path="${_log_path}/shitu_cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log" command="${generate_yaml_cmd} --type shitu --batch_size ${batch_size} --mkldnn ${use_mkldnn} --gpu ${use_gpu} --cpu_thread ${threads} --tensorrt False --precision ${precision} --data_dir ${_img_dir} --benchmark True --cls_model_dir ${cpp_infer_model_dir} --det_model_dir ${cpp_det_infer_model_dir}" eval $command command="${_script} 2>&1|tee ${_save_log_path}" eval $command last_status=${PIPESTATUS[0]} status_check $last_status "${command}" "${status_log}" done done done elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then for use_trt in ${cpp_use_trt_list[*]}; do for precision in ${cpp_precision_list[*]}; do if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then continue fi if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then continue fi if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then continue fi for batch_size in ${cpp_batch_size_list[*]}; do _save_log_path="${_log_path}/shitu_cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" command="${generate_yaml_cmd} --type shitu --batch_size ${batch_size} --mkldnn False --gpu ${use_gpu} --cpu_thread 1 --tensorrt ${use_trt} --precision ${precision} --data_dir ${_img_dir} --benchmark True --cls_model_dir ${cpp_infer_model_dir} --det_model_dir ${cpp_det_infer_model_dir}" eval $command command="${_script} 2>&1|tee ${_save_log_path}" eval $command last_status=${PIPESTATUS[0]} status_check $last_status "${_script}" "${status_log}" done done done else echo "Does not support hardware other than CPU and GPU Currently!" fi done } function func_cls_cpp_inference(){ IFS='|' _script=$1 _model_dir=$2 _log_path=$3 _img_dir=$4 _flag_quant=$5 # inference for use_gpu in ${cpp_use_gpu_list[*]}; do if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then continue fi for threads in ${cpp_cpu_threads_list[*]}; do for batch_size in ${cpp_batch_size_list[*]}; do precision="fp32" if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then precison="int8" fi _save_log_path="${_log_path}/cls_cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log" command="${generate_yaml_cmd} --type cls --batch_size ${batch_size} --mkldnn ${use_mkldnn} --gpu ${use_gpu} --cpu_thread ${threads} --tensorrt False --precision ${precision} --data_dir ${_img_dir} --benchmark True --cls_model_dir ${cpp_infer_model_dir}" eval $command command1="${_script} 2>&1|tee ${_save_log_path}" eval ${command1} last_status=${PIPESTATUS[0]} status_check $last_status "${command1}" "${status_log}" done done done elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then for use_trt in ${cpp_use_trt_list[*]}; do for precision in ${cpp_precision_list[*]}; do if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then continue fi if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then continue fi if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then continue fi for batch_size in ${cpp_batch_size_list[*]}; do _save_log_path="${_log_path}/cls_cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" command="${generate_yaml_cmd} --type cls --batch_size ${batch_size} --mkldnn False --gpu ${use_gpu} --cpu_thread 1 --tensorrt ${use_trt} --precision ${precision} --data_dir ${_img_dir} --benchmark True --cls_model_dir ${cpp_infer_model_dir}" eval $command command="${_script} 2>&1|tee ${_save_log_path}" eval $command last_status=${PIPESTATUS[0]} status_check $last_status "${command}" "${status_log}" done done done else echo "Does not support hardware other than CPU and GPU Currently!" fi done } if [[ $cpp_infer_type == "cls" ]]; then cd deploy/cpp elif [[ $cpp_infer_type == "shitu" ]]; then cd deploy/cpp_shitu else echo "Only support cls and shitu" exit 0 fi if [[ $cpp_infer_type == "shitu" ]]; then echo "################### update cmake ###################" wget -nc https://github.com/Kitware/CMake/releases/download/v3.22.0/cmake-3.22.0.tar.gz tar xf cmake-3.22.0.tar.gz cd ./cmake-3.22.0 export root_path=$PWD export install_path=${root_path}/cmake eval "./bootstrap --prefix=${install_path}" make -j make install export PATH=${install_path}/bin:$PATH cd .. echo "################### update cmake done ###################" echo "################### build faiss ###################" apt-get install -y libopenblas-dev git clone https://github.com/facebookresearch/faiss.git cd faiss export faiss_install_path=$PWD/faiss_install eval "cmake -B build . -DFAISS_ENABLE_PYTHON=OFF -DCMAKE_INSTALL_PREFIX=${faiss_install_path}" make -C build -j faiss make -C build install fi if [ -d "opencv-3.4.7/opencv3/" ] && [ $(md5sum opencv-3.4.7.tar.gz | awk -F ' ' '{print $1}') = "faa2b5950f8bee3f03118e600c74746a" ];then echo "################### build opencv skipped ###################" else echo "################### build opencv ###################" rm -rf opencv-3.4.7.tar.gz opencv-3.4.7/ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/opencv-3.4.7.tar.gz tar -xf opencv-3.4.7.tar.gz cd opencv-3.4.7/ install_path=$(pwd)/opencv3 rm -rf build mkdir build cd build cmake .. \ -DCMAKE_INSTALL_PREFIX=${install_path} \ -DCMAKE_BUILD_TYPE=Release \ -DBUILD_SHARED_LIBS=OFF \ -DWITH_IPP=OFF \ -DBUILD_IPP_IW=OFF \ -DWITH_LAPACK=OFF \ -DWITH_EIGEN=OFF \ -DCMAKE_INSTALL_LIBDIR=lib64 \ -DWITH_ZLIB=ON \ -DBUILD_ZLIB=ON \ -DWITH_JPEG=ON \ -DBUILD_JPEG=ON \ -DWITH_PNG=ON \ -DBUILD_PNG=ON \ -DWITH_TIFF=ON \ -DBUILD_TIFF=ON make -j make install cd ../ echo "################### build opencv finished ###################" fi echo "################### build PaddleClas demo ####################" OPENCV_DIR=$(pwd)/opencv-3.4.7/opencv3/ LIB_DIR=/work/project/project/test/paddle_inference/ # LIB_DIR=$(pwd)/Paddle/build/paddle_inference_install_dir/ CUDA_LIB_DIR=$(dirname `find /usr -name libcudart.so`) CUDNN_LIB_DIR=$(dirname `find /usr -name libcudnn.so`) BUILD_DIR=build rm -rf ${BUILD_DIR} mkdir ${BUILD_DIR} cd ${BUILD_DIR} if [[ $cpp_infer_type == cls ]]; then cmake .. \ -DPADDLE_LIB=${LIB_DIR} \ -DWITH_MKL=ON \ -DWITH_GPU=ON \ -DWITH_STATIC_LIB=OFF \ -DWITH_TENSORRT=OFF \ -DOPENCV_DIR=${OPENCV_DIR} \ -DCUDNN_LIB=${CUDNN_LIB_DIR} \ -DCUDA_LIB=${CUDA_LIB_DIR} \ -DTENSORRT_DIR=${TENSORRT_DIR} echo "---------------------------" else cmake ..\ -DPADDLE_LIB=${LIB_DIR} \ -DWITH_MKL=ON \ -DWITH_GPU=ON \ -DWITH_STATIC_LIB=OFF \ -DWITH_TENSORRT=OFF \ -DOPENCV_DIR=${OPENCV_DIR} \ -DCUDNN_LIB=${CUDNN_LIB_DIR} \ -DCUDA_LIB=${CUDA_LIB_DIR} \ -DTENSORRT_DIR=${TENSORRT_DIR} \ -DFAISS_DIR=${FAISS_DIR} \ -DFAISS_WITH_MKL=OFF fi make -j cd ../../../ # cd ../../ echo "################### build PaddleClas demo finished ###################" # set cuda device GPUID=$2 if [ ${#GPUID} -le 0 ];then env=" " else env="export CUDA_VISIBLE_DEVICES=${GPUID}" fi set CUDA_VISIBLE_DEVICES eval $env echo "################### run test ###################" export Count=0 IFS="|" infer_quant_flag=(${cpp_infer_is_quant}) for infer_model in ${cpp_infer_model_dir[*]}; do #run inference is_quant=${infer_quant_flag[Count]} if [[ $cpp_infer_type == "cls" ]]; then func_cls_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_image_dir_value}" ${is_quant} else func_shitu_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_image_dir_value}" ${is_quant} fi Count=$(($Count + 1)) done