# Model Library Overview ## Overview Based on the ImageNet1k classification dataset, the 23 classification network structures supported by PaddleClas and the corresponding 117 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters. ## Evaluation environment * CPU evaluation environment is based on Snapdragon 855 (SD855). * The GPU evaluation environment is based on V100 and TensorRT, and the evaluation script is as follows. ```shell #!/usr/bin/env bash export PYTHONPATH=$PWD:$PYTHONPATH python tools/infer/predict.py \ --model_file='pretrained/infer/model' \ --params_file='pretrained/infer/params' \ --enable_benchmark=True \ --model_name=ResNet50_vd \ --use_tensorrt=True \ --use_fp16=False \ --batch_size=1 ``` ![](../../images/models/T4_benchmark/t4.fp32.bs4.main_fps_top1.png) ![](../../images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg) ![](../../images/models/mobile_arm_top1.png) > If you think this document is helpful to you, welcome to give a star to our project:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas) ## Pretrained model list and download address - ResNet and ResNet_vd series - ResNet series[[1](#ref1)]([paper link](http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html)) - [ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar) - [ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) - [ResNet50](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) - [ResNet101](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) - [ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar) - ResNet_vc、ResNet_vd series[[2](#ref2)]([paper link](https://arxiv.org/abs/1812.01187)) - [ResNet50_vc](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar) - [ResNet18_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar) - [ResNet34_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar) - [ResNet34_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_ssld_pretrained.tar) - [ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) - [ResNet50_vd_v2](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar) - [ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar) - [ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar) - [ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar) - [ResNet50_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar) - [ResNet50_vd_ssld_v2](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_v2_pretrained.tar) - [Fix_ResNet50_vd_ssld_v2](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNet50_vd_ssld_v2_pretrained.tar) - [ResNet101_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar) - Mobile and Embedded Vision Applications Network series - MobileNetV3 series[[3](#ref3)]([paper link](https://arxiv.org/abs/1905.02244)) - [MobileNetV3_large_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_35_pretrained.tar) - [MobileNetV3_large_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar) - [MobileNetV3_large_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_75_pretrained.tar) - [MobileNetV3_large_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar) - [MobileNetV3_large_x1_25](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_25_pretrained.tar) - [MobileNetV3_small_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_pretrained.tar) - [MobileNetV3_small_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_5_pretrained.tar) - [MobileNetV3_small_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_75_pretrained.tar) - [MobileNetV3_small_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar) - [MobileNetV3_small_x1_25](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_25_pretrained.tar) - [MobileNetV3_large_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar) - [MobileNetV3_large_x1_0_ssld_int8](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_int8_pretrained.tar) - [MobileNetV3_small_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar) - MobileNetV2 series[[4](#ref4)]([paper link](https://arxiv.org/abs/1801.04381)) - [MobileNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar) - [MobileNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar) - [MobileNetV2_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar) - [MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) - [MobileNetV2_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar) - [MobileNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar) - [MobileNetV2_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_ssld_pretrained.tar) - MobileNetV1 series[[5](#ref5)]([paper link](https://arxiv.org/abs/1704.04861)) - [MobileNetV1_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar) - [MobileNetV1_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar) - [MobileNetV1_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar) - [MobileNetV1](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) - [MobileNetV1_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar) - ShuffleNetV2 series[[6](#ref6)]([paper link](https://arxiv.org/abs/1807.11164)) - [ShuffleNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar) - [ShuffleNetV2_x0_33](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar) - [ShuffleNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar) - [ShuffleNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar) - [ShuffleNetV2_x1_5](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar) - [ShuffleNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar) - [ShuffleNetV2_swish](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar) - GhostNet series[[23](#ref23)]([paper link](https://arxiv.org/pdf/1911.11907.pdf)) - [GhostNet_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x0_5_pretrained.pdparams) - [GhostNet_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_0_pretrained.pdparams) - [GhostNet_x1_3](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_3_pretrained.pdparams) - [GhostNet_x1_3_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_3_ssld_pretrained.tar) - SEResNeXt and Res2Net series - ResNeXt series[[7](#ref7)]([paper link](https://arxiv.org/abs/1611.05431)) - [ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar) - [ResNeXt50_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar) - [ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar) - [ResNeXt101_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar) - [ResNeXt152_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar) - [ResNeXt152_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar) - ResNeXt_vd series - [ResNeXt50_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar) - [ResNeXt50_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar) - [ResNeXt101_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar) - [ResNeXt101_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar) - [ResNeXt152_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_32x4d_pretrained.tar) - [ResNeXt152_vd_64x4d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar) - SE_ResNet_vd series[[8](#ref8)]([paper link](https://arxiv.org/abs/1709.01507)) - [SE_ResNet18_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet18_vd_pretrained.tar) - [SE_ResNet34_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet34_vd_pretrained.tar) - [SE_ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar) - SE_ResNeXt series - [SE_ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar) - [SE_ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar) - SE_ResNeXt_vd series - [SE_ResNeXt50_vd_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_vd_32x4d_pretrained.tar) - [SENet154_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar) - Res2Net series[[9](#ref9)]([paper link](https://arxiv.org/abs/1904.01169)) - [Res2Net50_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar) - [Res2Net50_vd_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar) - [Res2Net50_14w_8s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar) - [Res2Net101_vd_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar) - [Res2Net200_vd_26w_4s](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar) - [Res2Net200_vd_26w_4s_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_ssld_pretrained.tar) - Inception series - GoogLeNet series[[10](#ref10)]([paper link](https://arxiv.org/pdf/1409.4842.pdf)) - [GoogLeNet](https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar) - InceptionV3 series[[26](#ref26)]([paper link](https://arxiv.org/abs/1512.00567)) - [InceptionV3](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV3_pretrained.tar) - InceptionV4 series[[11](#ref11)]([paper link](https://arxiv.org/abs/1602.07261)) - [InceptionV4](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar) - Xception series[[12](#ref12)]([paper link](http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html)) - [Xception41](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar) - [Xception41_deeplab](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar) - [Xception65](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar) - [Xception65_deeplab](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar) - [Xception71](https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar) - HRNet series - HRNet series[[13](#ref13)]([paper link](https://arxiv.org/abs/1908.07919)) - [HRNet_W18_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar) - [HRNet_W18_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_ssld_pretrained.tar) - [HRNet_W30_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar) - [HRNet_W32_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar) - [HRNet_W40_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar) - [HRNet_W44_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar) - [HRNet_W48_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) - [HRNet_W48_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_ssld_pretrained.tar) - [HRNet_W64_C](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar) - DPN and DenseNet series - DPN series[[14](#ref14)]([paper link](https://arxiv.org/abs/1707.01629)) - [DPN68](https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar) - [DPN92](https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar) - [DPN98](https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar) - [DPN107](https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar) - [DPN131](https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar) - DenseNet series[[15](#ref15)]([paper link](https://arxiv.org/abs/1608.06993)) - [DenseNet121](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) - [DenseNet161](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar) - [DenseNet169](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar) - [DenseNet201](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar) - [DenseNet264](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar) - EfficientNet and ResNeXt101_wsl series - EfficientNet series[[16](#ref16)]([paper link](https://arxiv.org/abs/1905.11946)) - [EfficientNetB0_small](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_small_pretrained.tar) - [EfficientNetB0](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar) - [EfficientNetB1](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB1_pretrained.tar) - [EfficientNetB2](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB2_pretrained.tar) - [EfficientNetB3](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB3_pretrained.tar) - [EfficientNetB4](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB4_pretrained.tar) - [EfficientNetB5](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB5_pretrained.tar) - [EfficientNetB6](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB6_pretrained.tar) - [EfficientNetB7](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB7_pretrained.tar) - ResNeXt101_wsl series[[17](#ref17)]([paper link](https://arxiv.org/abs/1805.00932)) - [ResNeXt101_32x8d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar) - [ResNeXt101_32x16d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar) - [ResNeXt101_32x32d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar) - [ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar) - [Fix_ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar) - ResNeSt and RegNet series - ResNeSt series[[24](#ref24)]([paper link](https://arxiv.org/abs/2004.08955)) - [ResNeSt50_fast_1s1x64d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_fast_1s1x64d_pretrained.pdparams) - [ResNeSt50](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_pretrained.pdparams) - RegNet series[[25](#ref25)]([paper link](https://arxiv.org/abs/2003.13678)) - [RegNetX_4GF](https://paddle-imagenet-models-name.bj.bcebos.com/RegNetX_4GF_pretrained.pdparams) - Other models - AlexNet series[[18](#ref18)]([paper link](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)) - [AlexNet](https://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar) - SqueezeNet series[[19](#ref19)]([paper link](https://arxiv.org/abs/1602.07360)) - [SqueezeNet1_0](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar) - [SqueezeNet1_1](https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar) - VGG series[[20](#ref20)]([paper link](https://arxiv.org/abs/1409.1556)) - [VGG11](https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar) - [VGG13](https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar) - [VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar) - [VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar) - DarkNet series[[21](#ref21)]([paper link](https://arxiv.org/abs/1506.02640)) - [DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar) - ACNet series[[22](#ref22)]([paper link](https://arxiv.org/abs/1908.03930)) - [ResNet50_ACNet_deploy](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_ACNet_deploy_pretrained.tar) **Note**: The pretrained models of EfficientNetB1-B7 in the above models are transferred from [pytorch version of EfficientNet](https://github.com/lukemelas/EfficientNet-PyTorch), and the ResNeXt101_wsl series of pretrained models are transferred from [Official repo](https://github.com/facebookresearch/WSL-Images), the remaining pretrained models are obtained by training with the PaddlePaddle framework, and the corresponding training hyperparameters are given in configs. ## References [1] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778. [2] He T, Zhang Z, Zhang H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 558-567. [3] Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1314-1324. [4] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520. [5] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017. [6] Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131. [7] Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500. [8] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141. [9] Gao S, Cheng M M, Zhao K, et al. Res2net: A new multi-scale backbone architecture[J]. IEEE transactions on pattern analysis and machine intelligence, 2019. [10] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9. [11] Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//Thirty-first AAAI conference on artificial intelligence. 2017. [12] Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1251-1258. [13] Wang J, Sun K, Cheng T, et al. Deep high-resolution representation learning for visual recognition[J]. arXiv preprint arXiv:1908.07919, 2019. [14] Chen Y, Li J, Xiao H, et al. Dual path networks[C]//Advances in neural information processing systems. 2017: 4467-4475. [15] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708. [16] Tan M, Le Q V. Efficientnet: Rethinking model scaling for convolutional neural networks[J]. arXiv preprint arXiv:1905.11946, 2019. [17] Mahajan D, Girshick R, Ramanathan V, et al. Exploring the limits of weakly supervised pretraining[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 181-196. [18] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105. [19] Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016. [20] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. [21] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788. [22] Ding X, Guo Y, Ding G, et al. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1911-1920. [23] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1580-1589. [24] Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020. [25] Radosavovic I, Kosaraju R P, Girshick R, et al. Designing network design spaces[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 10428-10436. [26] C.Szegedy, V.Vanhoucke, S.Ioffe, J.Shlens, and Z.Wojna. Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.