# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr __all__ = [ "CSPResNet50_leaky", "CSPResNet50_mish", "CSPResNet101_leaky", "CSPResNet101_mish" ] class CSPResNet(): def __init__(self, layers=50, act="leaky_relu"): self.layers = layers self.act = act def net(self, input, class_dim=1000, data_format="NCHW"): layers = self.layers supported_layers = [50, 101] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format( supported_layers, layers) if layers == 50: depth = [3, 3, 5, 2] elif layers == 101: depth = [3, 3, 22, 2] num_filters = [64, 128, 256, 512] conv = self.conv_bn_layer( input=input, num_filters=64, filter_size=7, stride=2, act=self.act, name="conv1", data_format=data_format) conv = fluid.layers.pool2d( input=conv, pool_size=2, pool_stride=2, pool_padding=0, pool_type='max', data_format=data_format) for block in range(len(depth)): conv_name = "res" + str(block + 2) + chr(97) if block != 0: conv = self.conv_bn_layer( input=conv, num_filters=num_filters[block], filter_size=3, stride=2, act=self.act, name=conv_name + "_downsample", data_format=data_format) # split left = conv right = conv if block == 0: ch = num_filters[block] else: ch = num_filters[block] * 2 right = self.conv_bn_layer( input=right, num_filters=ch, filter_size=1, act=self.act, name=conv_name + "_right_first_route", data_format=data_format) for i in range(depth[block]): conv_name = "res" + str(block + 2) + chr(97 + i) right = self.bottleneck_block( input=right, num_filters=num_filters[block], stride=1, name=conv_name, data_format=data_format) # route left = self.conv_bn_layer( input=left, num_filters=num_filters[block] * 2, filter_size=1, act=self.act, name=conv_name + "_left_route", data_format=data_format) right = self.conv_bn_layer( input=right, num_filters=num_filters[block] * 2, filter_size=1, act=self.act, name=conv_name + "_right_route", data_format=data_format) conv = fluid.layers.concat([left, right], axis=1) conv = self.conv_bn_layer( input=conv, num_filters=num_filters[block] * 2, filter_size=1, stride=1, act=self.act, name=conv_name + "_merged_transition", data_format=data_format) pool = fluid.layers.pool2d( input=conv, pool_type='avg', global_pooling=True, data_format=data_format) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) out = fluid.layers.fc( input=pool, size=class_dim, param_attr=fluid.param_attr.ParamAttr( name="fc_0.w_0", initializer=fluid.initializer.Uniform(-stdv, stdv)), bias_attr=ParamAttr(name="fc_0.b_0")) return out def conv_bn_layer(self, input, num_filters, filter_size, stride=1, groups=1, act=None, name=None, data_format='NCHW'): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, param_attr=ParamAttr(name=name + "_weights"), bias_attr=False, name=name + '.conv2d.output.1', data_format=data_format) if name == "conv1": bn_name = "bn_" + name else: bn_name = "bn" + name[3:] bn = fluid.layers.batch_norm( input=conv, act=None, name=bn_name + '.output.1', param_attr=ParamAttr(name=bn_name + '_scale'), bias_attr=ParamAttr(bn_name + '_offset'), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance', data_layout=data_format) if act == "relu": bn = fluid.layers.relu(bn) elif act == "leaky_relu": bn = fluid.layers.leaky_relu(bn) elif act == "mish": bn = self._mish(bn) return bn def _mish(self, input): return input * fluid.layers.tanh(self._softplus(input)) def _softplus(self, input): expf = fluid.layers.exp(fluid.layers.clip(input, -200, 50)) return fluid.layers.log(1 + expf) def shortcut(self, input, ch_out, stride, is_first, name, data_format): if data_format == 'NCHW': ch_in = input.shape[1] else: ch_in = input.shape[-1] if ch_in != ch_out or stride != 1 or is_first is True: return self.conv_bn_layer( input, ch_out, 1, stride, name=name, data_format=data_format) else: return input def bottleneck_block(self, input, num_filters, stride, name, data_format): conv0 = self.conv_bn_layer( input=input, num_filters=num_filters, filter_size=1, act="leaky_relu", name=name + "_branch2a", data_format=data_format) conv1 = self.conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, stride=stride, act="leaky_relu", name=name + "_branch2b", data_format=data_format) conv2 = self.conv_bn_layer( input=conv1, num_filters=num_filters * 2, filter_size=1, act=None, name=name + "_branch2c", data_format=data_format) short = self.shortcut( input, num_filters * 2, stride, is_first=False, name=name + "_branch1", data_format=data_format) ret = short + conv2 ret = fluid.layers.leaky_relu(ret, alpha=0.1) return ret def CSPResNet50_leaky(): model = CSPResNet(layers=50, act="leaky_relu") return model def CSPResNet50_mish(): model = CSPResNet(layers=50, act="mish") return model def CSPResNet101_leaky(): model = CSPResNet(layers=101, act="leaky_relu") return model def CSPResNet101_mish(): model = CSPResNet(layers=101, act="mish") return model