# PULC 文本行方向分类模型 ------ ## 目录 - [1. 模型和应用场景介绍](#1) - [2. 模型快速体验](#2) - [3. 模型训练、评估和预测](#3) - [3.1 环境配置](#3.1) - [3.2 数据准备](#3.2) - [3.2.1 数据集来源](#3.2.1) - [3.2.2 数据集获取](#3.2.2) - [3.3 模型训练](#3.3) - [3.4 模型评估](#3.4) - [3.5 模型预测](#3.5) - [4. 模型压缩](#4) - [4.1 SKL-UGI 知识蒸馏](#4.1) - [4.1.1 教师模型训练](#4.1.1) - [4.1.2 蒸馏训练](#4.1.2) - [5. 超参搜索](#5) - [6. 模型推理部署](#6) - [6.1 推理模型准备](#6.1) - [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1) - [6.1.2 直接下载 inference 模型](#6.1.2) - [6.2 基于 Python 预测引擎推理](#6.2) - [6.2.1 预测单张图像](#6.2.1) - [6.2.2 基于文件夹的批量预测](#6.2.2) - [6.3 基于 C++ 预测引擎推理](#6.3) - [6.4 服务化部署](#6.4) - [6.5 端侧部署](#6.5) - [6.6 Paddle2ONNX 模型转换与预测](#6.6) ## 1. 模型和应用场景介绍 该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的文本行方向分类模型。该模型可以广泛应用于如文字矫正、文字识别等场景。 下表列出了文本行方向分类模型的相关指标,前两行展现了使用 Res2Net200_vd 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。 | 模型 | Top-1 Acc(%) | 延时(ms) | 存储(M) | 策略 | |-------|-----------|----------|---------------|---------------| | SwinTranformer_tiny | 93.61 | 89.64 | 107 | 使用 ImageNet 预训练模型 | | MobileNetV3_small_x0_35 | 81.40 | 2.96 | 17 | 使用 ImageNet 预训练模型 | | PPLCNet_x1_0 | 89.99 | 2.11 | 6.5 | 使用 ImageNet 预训练模型 | | PPLCNet_x1_0* | 94.06 | 2.68 | 6.5 | 使用 ImageNet 预训练模型 | | PPLCNet_x1_0* | 94.11 | 2.68 | 6.5 | 使用 SSLD 预训练模型 | | PPLCNet_x1_0** | 96.01 | 2.72 | 6.5 | 使用 SSLD 预训练模型+EDA 策略| | PPLCNet_x1_0** | 95.86 | 2.72 | 6.5 | 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略| 从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backboone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,精度下降也比较明显。将 backbone 替换为 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高 8.6 个百分点,速度快10%左右。在此基础上,更改分辨率和stride, 速度变慢 27%,但是精度可以提升 4.5%(采用[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)的方案),使用 SSLD 预训练模型后,精度可以继续提升约 0.05% ,进一步地,当融合EDA策略后,精度可以再提升 1.9 个百分点。最后,融合SKL-UGI 知识蒸馏策略后,在该场景无效。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。 **备注:** * 其中不带\*的模型表示分辨率为224x224,带\*的模型表示分辨率为48x192(h*w),数据增强从网络中的 stride 改为 `[2, [2, 1], [2, 1], [2, 1], [2, 1]]`,其中,外层列表中的每一个元素代表网络结构下采样层的stride,该策略为 [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) 提供的文本行方向分类器方案。带\*\*的模型表示分辨率为80x160(h*w), 网络中的 stride 改为 `[2, [2, 1], [2, 1], [2, 1], [2, 1]]`,其中,外层列表中的每一个元素代表网络结构下采样层的stride,此分辨率是经过[SHAS 超参数搜索策略](#TODO)搜索得到的。 * 延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。 * 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)。 ## 2. 模型快速体验 ### 2.1 安装 paddleclas 使用如下命令快速安装 paddlepaddle, paddleclas ``` pip3 install paddlepaddle paddleclas ``` ### 2.2 预测 * 使用命令行快速预测 ```bash paddleclas --model_name=textline_orientation --infer_imgs=deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png ``` 结果如下: ``` >>> result class_ids: [0], scores: [1.00], label_names: ['0_degree'], filename: deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png Predict complete! ``` **备注**: 更换其他预测的数据时,只需要改变 `--infer_imgs=xx` 中的字段即可,支持传入整个文件夹。 * 在 Python 代码中预测 ```python import paddleclas model = paddleclas.PaddleClas(model_name="textline_orientation") result = model.predict(input_data="deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png") print(next(result)) ``` **备注**:`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1,如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="person_exists", batch_size=2)`, 使用默认的代码返回结果示例如下: ``` >>> result [{'class_ids': [0], 'scores': [1.00], 'label_names': ['0_degree'], 'filename': 'deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png'}] ``` ## 3. 模型训练、评估和预测 ### 3.1 环境配置 * 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。 ### 3.2 数据准备 #### 3.2.1 数据集来源 本案例中所使用的所有数据集来源于内部数据,如果您希望体验训练过程,可以使用开源数据如[ICDAR2019-LSVT 文本行识别数据](https://aistudio.baidu.com/aistudio/datasetdetail/8429)。 #### 3.2.2 数据集获取 在公开数据集的基础上经过后处理即可得到本案例需要的数据,具体处理方法如下: 本案例处理了 ICDAR2019-LSVT 文本行识别数据,将其中的 id 号为 0-1999 作为本案例的数据集合,经过旋转处理成 0 类 和 1 类,其中 0 类代表文本行为正,即 0 度,1 类代表文本行为反,即 180 度。 - 训练集合,id号为 0-1799 作为训练集合,0 类和 1 类共 3600 张。 - 验证集合,id号为 1800-1999 作为验证集合,0 类和 1 类共 400 张。 处理后的数据集部分数据可视化如下: ![](../../images/PULC/docs/textline_orientation_data_demo.png) 此处提供了经过上述方法处理好的数据,可以直接下载得到。 进入 PaddleClas 目录。 ``` cd path_to_PaddleClas ``` 进入 `dataset/` 目录,下载并解压有人/无人场景的数据。 ```shell cd dataset wget https://paddleclas.bj.bcebos.com/data/PULC/textline_orientation.tar tar -xf textline_orientation.tar cd ../ ``` 执行上述命令后,`dataset/` 下存在 `textline_orientation` 目录,该目录中具有以下数据: ``` ├── 0 │   ├── img_0.jpg │   ├── img_1.jpg ... ├── 1 │   ├── img_0.jpg │   ├── img_1.jpg ... ├── train_list.txt └── val_list.txt ``` 其中 `0/` 和 `1/` 分别存放 0 类和 1 类的数据。`train_list.txt` 和 `val_list.txt` 分别为训练集和验证集的标签文件。 **备注:** * 关于 `train_list.txt`、`val_list.txt` 的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明) 。 ### 3.3 模型训练 在 `ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练: ```shell export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ -c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml ``` **备注:** * 由于此时使用的数据集并非内部非开源数据集,此处不能直接复现提供的模型的指标,如果希望得到更高的精度,可以根据需要处理[ICDAR2019-LSVT 文本行识别数据](https://aistudio.baidu.com/aistudio/datasetdetail/8429)。 ### 3.4 模型评估 训练好模型之后,可以通过以下命令实现对模型指标的评估。 ```bash python3 tools/eval.py \ -c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \ -o Global.pretrained_model="output/PPLCNet_x1_0/best_model" ``` 其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。 ### 3.5 模型预测 模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测: ```python python3 tools/infer.py \ -c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \ -o Global.pretrained_model=output/PPLCNet_x1_0/best_model \ ``` 输出结果如下: ``` [{'class_ids': [0], 'scores': [1.0], 'file_name': 'deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png', 'label_names': ['0_degree']}] ``` **备注:** * 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。 * 默认是对 `deploy/images/PULC/textline_orientation/textline_orientation_test_0_0.png` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。 ## 4. 模型压缩 ### 4.1 SKL-UGI 知识蒸馏 SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)。 #### 4.1.1 教师模型训练 复用 `./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下: ```shell export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ -c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \ -o Arch.name=ResNet101_vd ``` 当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`。 #### 4.1.2 蒸馏训练 配置文件`ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型。训练脚本如下: ```shell export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ -c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0_distillation.yaml \ -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model ``` 当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`。 ## 5. 超参搜索 在 [3.2 节](#3.2)和 [4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `SHAS 超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS 超参数搜索策略](PULC_train.md#4-超参搜索)来获得更好的训练超参数。 **备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。 ## 6. 模型推理部署 ### 6.1 推理模型准备 Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。 当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。 ### 6.1.1 基于训练得到的权重导出 inference 模型 此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型: ```bash python3 tools/export_model.py \ -c ./ppcls/configs/PULC/textline_orientation/PPLCNet_x1_0.yaml \ -o Global.pretrained_model=output/PPLCNet_x1_0/best_model \ -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_textline_orientation_infer ``` 执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_textline_orientation_infer` 文件夹,`models` 文件夹下应有如下文件结构: ``` ├── PPLCNet_x1_0_textline_orientation_infer │ ├── inference.pdiparams │ ├── inference.pdiparams.info │ └── inference.pdmodel ``` **备注:** 此处的最佳权重可以根据实际情况来选择,如果希望导出知识蒸馏后的权重,则最佳权重保存在`output/DistillationModel/best_model_student.pdparams`,在导出命令中更改`-o Global.pretrained_model=xx`中的字段为`output/DistillationModel/best_model_student`即可。 ### 6.1.2 直接下载 inference 模型 [6.1.1 小节](#6.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。 ``` cd deploy/models # 下载 inference 模型并解压 wget https://paddleclas.bj.bcebos.com/models/PULC/textline_orientation_infer.tar && tar -xf textline_orientation_infer.tar ``` 解压完毕后,`models` 文件夹下应有如下文件结构: ``` ├── textline_orientation_infer │ ├── inference.pdiparams │ ├── inference.pdiparams.info │ └── inference.pdmodel ``` ### 6.2 基于 Python 预测引擎推理 #### 6.2.1 预测单张图像 返回 `deploy` 目录: ``` cd ../ ``` 运行下面的命令,对图像 `./images/PULC/textline_orientation/textline_orientation_test_0_0.png` 进行文字方向cd分类。 ```shell # 使用下面的命令使用 GPU 进行预测 python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_textline_orientation.yaml # 使用下面的命令使用 CPU 进行预测 python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_textline_orientation.yaml -o Global.use_gpu=False ``` 输出结果如下。 ``` textline_orientation_test_0_0.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree'] ``` #### 6.2.2 基于文件夹的批量预测 如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。 ```shell # 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False python3.7 python/predict_cls.py -c configs/PULC/textline_orientation/inference_textline_orientation.yaml -o Global.infer_imgs="./images/PULC/textline_orientation/" ``` 终端中会输出该文件夹内所有图像的分类结果,如下所示。 ``` textline_orientation_test_0_0.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree'] textline_orientation_test_0_1.png: class id(s): [0], score(s): [1.00], label_name(s): ['0_degree'] textline_orientation_test_1_0.png: class id(s): [1], score(s): [1.00], label_name(s): ['180_degree'] textline_orientation_test_1_1.png: class id(s): [1], score(s): [1.00], label_name(s): ['180_degree'] ``` 其中,`0_degree` 表示该文本行为 0 度,`180_degree` 表示该文本行为 180 度。 ### 6.3 基于 C++ 预测引擎推理 PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。 ### 6.4 服务化部署 Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。 PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。 ### 6.5 端侧部署 Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。 PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。 ### 6.6 Paddle2ONNX 模型转换与预测 Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。 PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。