# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.abspath(os.path.join(__dir__, '../'))) import cv2 import numpy as np from utils import logger from utils import config from utils.predictor import Predictor from utils.get_image_list import get_image_list from python.preprocess import create_operators from python.postprocess import build_postprocess class ClsPredictor(Predictor): def __init__(self, config): super().__init__(config["Global"]) self.preprocess_ops = [] self.postprocess = None if "PreProcess" in config: if "transform_ops" in config["PreProcess"]: self.preprocess_ops = create_operators(config["PreProcess"][ "transform_ops"]) if "PostProcess" in config: self.postprocess = build_postprocess(config["PostProcess"]) # for whole_chain project to test each repo of paddle self.benchmark = config.get(["benchmark"], False) if self.benchmark: import auto_log import os pid = os.getpid() self.auto_log = auto_log.AutoLogger( model_name='cls', model_precision='fp16' if config["Global"]["use_fp16"] else 'fp32', batch_size=1, data_shape=[3, 224, 224], save_path="../output/auto_log.lpg", inference_config=None, pids=pid, process_name=None, gpu_ids=None, time_keys=['preprocess_time', 'inference_time'], warmup=10) def predict(self, images): input_names = self.paddle_predictor.get_input_names() input_tensor = self.paddle_predictor.get_input_handle(input_names[0]) output_names = self.paddle_predictor.get_output_names() output_tensor = self.paddle_predictor.get_output_handle(output_names[ 0]) if self.benchmark: self.auto_log.times.start() if not isinstance(images, (list, )): images = [images] for idx in range(len(images)): for ops in self.preprocess_ops: images[idx] = ops(images[idx]) image = np.array(images) if self.benchmark: self.auto_log.times.stamp() input_tensor.copy_from_cpu(image) self.paddle_predictor.run() batch_output = output_tensor.copy_to_cpu() if self.benchmark: self.auto_log.times.stamp() return batch_output def main(config): cls_predictor = ClsPredictor(config) image_list = get_image_list(config["Global"]["infer_imgs"]) assert config["Global"]["batch_size"] == 1 for idx, image_file in enumerate(image_list): img = cv2.imread(image_file)[:, :, ::-1] output = cls_predictor.predict(img) output = cls_predictor.postprocess(output, [image_file]) if cls_predictor.benchmark: cls_predictor.auto_log.times.end(stamp=True) cls_predictor.auto_log.report() print(output) return if __name__ == "__main__": args = config.parse_args() config = config.get_config(args.config, overrides=args.override, show=True) main(config)