# 基于PaddleHub Serving的服务部署
PaddleClas 支持通过 PaddleHub 快速进行服务化部署。
---
## 1. 简介
hubserving 服务部署配置服务包 `clas` 下包含 3 个必选文件,目录如下:
```
hubserving/clas/
└─ __init__.py 空文件,必选
└─ config.json 配置文件,可选,使用配置启动服务时作为参数传入
└─ module.py 主模块,必选,包含服务的完整逻辑
└─ params.py 参数文件,必选,包含模型路径、前后处理参数等参数
```
## 2. 准备环境
```shell
# 安装paddlehub,请安装2.0版本
pip3 install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
```
## 3. 下载推理模型
安装服务模块前,需要准备推理模型并放到正确路径,默认模型路径为:
* 分类推理模型结构文件:`PaddleClas/inference/inference.pdmodel`
* 分类推理模型权重文件:`PaddleClas/inference/inference.pdiparams`
**注意**:
* 模型文件路径可在 `PaddleClas/deploy/hubserving/clas/params.py` 中查看和修改:
```python
"inference_model_dir": "../inference/"
```
需要注意,
* 模型文件(包括 `.pdmodel` 与 `.pdiparams`)名称必须为`inference`。
* 我们也提供了大量基于ImageNet-1k数据集的预训练模型,模型列表及下载地址详见[模型库概览](../models/models_intro.md),也可以使用自己训练转换好的模型。
## 4. 安装服务模块
针对 Linux 环境和 Windows 环境,安装命令如下。
* 在Linux环境下,安装示例如下:
```shell
cd PaddleClas/deploy
# 安装服务模块:
hub install hubserving/clas/
```
* 在Windows环境下(文件夹的分隔符为`\`),安装示例如下:
```shell
cd PaddleClas\deploy
# 安装服务模块:
hub install hubserving\clas\
```
## 5. 启动服务
### 5.1 命令行命令启动
该方式仅支持使用 CPU 预测。启动命令:
```shell
$ hub serving start --modules Module1==Version1 \
--port XXXX \
--use_multiprocess \
--workers \
```
**参数说明**:
|参数|用途|
|-|-|
|--modules/-m| [**必选**] PaddleHub Serving预安装模型,以多个Module==Version键值对的形式列出
*`当不指定Version时,默认选择最新版本`*|
|--port/-p| [**可选**] 服务端口,默认为8866|
|--use_multiprocess| [**可选**] 是否启用并发方式,默认为单进程方式,推荐多核CPU机器使用此方式
*`Windows操作系统只支持单进程方式`*|
|--workers| [**可选**] 在并发方式下指定的并发任务数,默认为`2*cpu_count-1`,其中`cpu_count`为CPU核数|
如按默认参数启动服务:```hub serving start -m clas_system```
这样就完成了一个服务化 API 的部署,使用默认端口号 8866。
### 5.2 配置文件启动
该方式仅支持使用 CPU 或 GPU 预测。启动命令:
```hub serving start -c config.json```
其中,`config.json`格式如下:
```json
{
"modules_info": {
"clas_system": {
"init_args": {
"version": "1.0.0",
"use_gpu": true,
"enable_mkldnn": false
},
"predict_args": {
}
}
},
"port": 8866,
"use_multiprocess": false,
"workers": 2
}
```
**参数说明**:
* `init_args`中的可配参数与`module.py`中的`_initialize`函数接口一致。其中,
- 当`use_gpu`为`true`时,表示使用GPU启动服务。
- 当`enable_mkldnn`为`true`时,表示使用MKL-DNN加速。
* `predict_args`中的可配参数与`module.py`中的`predict`函数接口一致。
**注意**:
* 使用配置文件启动服务时,将使用配置文件中的参数设置,其他命令行参数将被忽略;
* 如果使用 GPU 预测(即,`use_gpu`置为`true`),则需要在启动服务之前,设置 `CUDA_VISIBLE_DEVICES` 环境变量来指定所使用的 GPU 卡号,如:`export CUDA_VISIBLE_DEVICES=0`;
* **`use_gpu` 不可与 `use_multiprocess` 同时为 `true`**;
* **`use_gpu` 与 `enable_mkldnn` 同时为 `true` 时,将忽略 `enable_mkldnn`,而使用 GPU**。
如使用 GPU 3号卡启动服务:
```shell
cd PaddleClas/deploy
export CUDA_VISIBLE_DEVICES=3
hub serving start -c hubserving/clas/config.json
```
## 6. 发送预测请求
配置好服务端后,可使用以下命令发送预测请求,获取预测结果:
```shell
cd PaddleClas/deploy
python hubserving/test_hubserving.py server_url image_path
```
**脚本参数说明**:
* **server_url**:服务地址,格式为
`http://[ip_address]:[port]/predict/[module_name]`
* **image_path**:测试图像路径,可以是单张图片路径,也可以是图像集合目录路径。
* **batch_size**:[**可选**] 以`batch_size`大小为单位进行预测,默认为`1`。
* **resize_short**:[**可选**] 预处理时,按短边调整大小,默认为`256`。
* **crop_size**:[**可选**] 预处理时,居中裁剪的大小,默认为`224`。
* **normalize**:[**可选**] 预处理时,是否进行`normalize`,默认为`True`。
* **to_chw**:[**可选**] 预处理时,是否调整为`CHW`顺序,默认为`True`。
**注意**:如果使用`Transformer`系列模型,如`DeiT_***_384`, `ViT_***_384`等,请注意模型的输入数据尺寸,需要指定`--resize_short=384 --crop_size=384`。
访问示例:
```shell
python hubserving/test_hubserving.py --server_url http://127.0.0.1:8866/predict/clas_system --image_file ./hubserving/ILSVRC2012_val_00006666.JPEG --batch_size 8
```
**返回结果格式说明**:
返回结果为列表(list),包含 top-k 个分类结果,以及对应的得分,还有此图片预测耗时,具体如下:
```
list: 返回结果
└─ list: 第一张图片结果
└─ list: 前k个分类结果,依score递减排序
└─ list: 前k个分类结果对应的score,依score递减排序
└─ float: 该图分类耗时,单位秒
```
## 7. 自定义修改服务模块
如果需要修改服务逻辑,需要进行以下操作:
1. 停止服务
```hub serving stop --port/-p XXXX```
2. 到相应的`module.py`和`params.py`等文件中根据实际需求修改代码。`module.py`修改后需要重新安装(`hub install hubserving/clas/`)并部署。在进行部署前,可通过`python hubserving/clas/module.py`测试已安装服务模块。
3. 卸载旧服务包
```hub uninstall clas_system```
4. 安装修改后的新服务包
```hub install hubserving/clas/```
5.重新启动服务
```hub serving start -m clas_system```
**注意**:
常用参数可在 `PaddleClas/deploy/hubserving/clas/params.py` 中修改:
* 更换模型,需要修改模型文件路径参数:
```python
"inference_model_dir":
```
* 更改后处理时返回的`top-k`结果数量:
```python
'topk':
```
* 更改后处理时的lable与class id对应映射文件:
```python
'class_id_map_file':
```
为了避免不必要的延时以及能够以 batch_size 进行预测,数据预处理逻辑(包括 `resize`、`crop` 等操作)均在客户端完成,因此需要在 `PaddleClas/deploy/hubserving/test_hubserving.py#L35-L52`中修改。