// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include namespace PaddleClas { void Classifier::LoadModel(const std::string &model_dir) { AnalysisConfig config; config.SetModel(model_dir + "/model", model_dir + "/params"); if (this->use_gpu_) { config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); } else { config.DisableGpu(); if (this->use_mkldnn_) { config.EnableMKLDNN(); // cache 10 different shapes for mkldnn to avoid memory leak config.SetMkldnnCacheCapacity(10); } config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_); } // false for zero copy tensor // true for commom tensor config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_); // true for multiple input config.SwitchSpecifyInputNames(true); config.SwitchIrOptim(true); config.EnableMemoryOptim(); config.DisableGlogInfo(); this->predictor_ = CreatePaddlePredictor(config); } void Classifier::Run(cv::Mat &img) { float ratio_h{}; float ratio_w{}; cv::Mat srcimg; cv::Mat resize_img; img.copyTo(srcimg); this->resize_op_.Run(img, resize_img, this->resize_short_size_, ratio_h, ratio_w); this->crop_op_.Run(resize_img, this->crop_size_); this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_); std::vector input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); this->permute_op_.Run(&resize_img, input.data()); // Inference. if (this->use_zero_copy_run_) { auto input_names = this->predictor_->GetInputNames(); auto input_t = this->predictor_->GetInputTensor(input_names[0]); input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); input_t->copy_from_cpu(input.data()); this->predictor_->ZeroCopyRun(); } else { paddle::PaddleTensor input_t; input_t.shape = {1, 3, resize_img.rows, resize_img.cols}; input_t.data = paddle::PaddleBuf(input.data(), input.size() * sizeof(float)); input_t.dtype = PaddleDType::FLOAT32; std::vector outputs; this->predictor_->Run({input_t}, &outputs, 1); } std::vector out_data; auto output_names = this->predictor_->GetOutputNames(); auto output_t = this->predictor_->GetOutputTensor(output_names[0]); std::vector output_shape = output_t->shape(); int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, std::multiplies()); out_data.resize(out_num); output_t->copy_to_cpu(out_data.data()); int maxPosition = max_element(out_data.begin(), out_data.end()) - out_data.begin(); std::cout << "result: " << std::endl; std::cout << "\tclass id: " << maxPosition << std::endl; std::cout << std::fixed << std::setprecision(10) << "\tscore: " << double(out_data[maxPosition]) << std::endl; } } // namespace PaddleClas