# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ppcls.data.preprocess.ops.autoaugment import ImageNetPolicy as RawImageNetPolicy from ppcls.data.preprocess.ops.randaugment import RandAugment as RawRandAugment from ppcls.data.preprocess.ops.randaugment import RandomApply from ppcls.data.preprocess.ops.timm_autoaugment import RawTimmAutoAugment from ppcls.data.preprocess.ops.cutout import Cutout from ppcls.data.preprocess.ops.hide_and_seek import HideAndSeek from ppcls.data.preprocess.ops.random_erasing import RandomErasing from ppcls.data.preprocess.ops.grid import GridMask from ppcls.data.preprocess.ops.operators import DecodeImage from ppcls.data.preprocess.ops.operators import ResizeImage from ppcls.data.preprocess.ops.operators import CropImage from ppcls.data.preprocess.ops.operators import CenterCrop, Resize from ppcls.data.preprocess.ops.operators import RandCropImage from ppcls.data.preprocess.ops.operators import RandCropImageV2 from ppcls.data.preprocess.ops.operators import RandFlipImage from ppcls.data.preprocess.ops.operators import NormalizeImage from ppcls.data.preprocess.ops.operators import ToCHWImage from ppcls.data.preprocess.ops.operators import AugMix from ppcls.data.preprocess.ops.operators import Pad from ppcls.data.preprocess.ops.operators import ToTensor from ppcls.data.preprocess.ops.operators import Normalize from ppcls.data.preprocess.ops.operators import RandomHorizontalFlip from ppcls.data.preprocess.ops.operators import RandomResizedCrop from ppcls.data.preprocess.ops.operators import CropWithPadding from ppcls.data.preprocess.ops.operators import RandomInterpolationAugment from ppcls.data.preprocess.ops.operators import ColorJitter from ppcls.data.preprocess.ops.operators import RandomGrayscale from ppcls.data.preprocess.ops.operators import RandomCropImage from ppcls.data.preprocess.ops.operators import RandomRotation from ppcls.data.preprocess.ops.operators import Padv2 from ppcls.data.preprocess.ops.operators import RandomRot90 from ppcls.data.preprocess.ops.operators import PCALighting from .ops.operators import format_data from paddle.vision.transforms import Pad as Pad_paddle_vision from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, OpSampler, FmixOperator from ppcls.data.preprocess.batch_ops.batch_operators import MixupCutmixHybrid import numpy as np from PIL import Image import random def transform(data, ops=[]): """ transform """ for op in ops: data = op(data) return data class AutoAugment(RawImageNetPolicy): """ ImageNetPolicy wrapper to auto fit different img types """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __call__(self, img): if not isinstance(img, Image.Image): img = np.ascontiguousarray(img) img = Image.fromarray(img) img = super().__call__(img) if isinstance(img, Image.Image): img = np.asarray(img) return img class RandAugment(RawRandAugment): """ RandAugment wrapper to auto fit different img types """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __call__(self, img): if not isinstance(img, Image.Image): img = np.ascontiguousarray(img) img = Image.fromarray(img) img = super().__call__(img) if isinstance(img, Image.Image): img = np.asarray(img) return img class TimmAutoAugment(RawTimmAutoAugment): """ TimmAutoAugment wrapper to auto fit different img tyeps. """ def __init__(self, prob=1.0, *args, **kwargs): super().__init__(*args, **kwargs) self.prob = prob @format_data def __call__(self, img): if not isinstance(img, Image.Image): img = np.ascontiguousarray(img) img = Image.fromarray(img) if random.random() < self.prob: img = super().__call__(img) if isinstance(img, Image.Image): img = np.asarray(img) return img