#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr __all__ = ["GhostNet", "GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3"] class GhostNet(): def __init__(self, scale): cfgs = [ # k, t, c, SE, s [3, 16, 16, 0, 1], [3, 48, 24, 0, 2], [3, 72, 24, 0, 1], [5, 72, 40, 1, 2], [5, 120, 40, 1, 1], [3, 240, 80, 0, 2], [3, 200, 80, 0, 1], [3, 184, 80, 0, 1], [3, 184, 80, 0, 1], [3, 480, 112, 1, 1], [3, 672, 112, 1, 1], [5, 672, 160, 1, 2], [5, 960, 160, 0, 1], [5, 960, 160, 1, 1], [5, 960, 160, 0, 1], [5, 960, 160, 1, 1] ] self.cfgs = cfgs self.scale = scale def net(self, input, class_dim=1000): # build first layer: output_channel = int(self._make_divisible(16 * self.scale, 4)) x = self.conv_bn_layer(input=input, num_filters=output_channel, filter_size=3, stride=2, groups=1, act="relu", name="conv1") # build inverted residual blocks idx = 0 for k, exp_size, c, use_se, s in self.cfgs: output_channel = int(self._make_divisible(c * self.scale, 4)) hidden_channel = int(self._make_divisible(exp_size * self.scale, 4)) x = self.ghost_bottleneck(input=x, hidden_dim=hidden_channel, output=output_channel, kernel_size=k, stride=s, use_se=use_se, name="_ghostbottleneck_" + str(idx)) idx += 1 # build last several layers output_channel = int(self._make_divisible(exp_size * self.scale, 4)) x = self.conv_bn_layer(input=x, num_filters=output_channel, filter_size=1, stride=1, groups=1, act="relu", name="conv_last") x = fluid.layers.pool2d(input=x, pool_type='avg', global_pooling=True) output_channel = 1280 stdv = 1.0 / math.sqrt(x.shape[1] * 1.0) out = self.conv_bn_layer(input=x, num_filters=output_channel, filter_size=1, stride=1, act="relu", name="fc_0") out = fluid.layers.dropout(x=out, dropout_prob=0.2) stdv = 1.0 / math.sqrt(out.shape[1] * 1.0) out = fluid.layers.fc(input=out, size=class_dim, param_attr=ParamAttr(name="fc_1_weights", initializer=fluid.initializer.Uniform(-stdv, stdv)), bias_attr=ParamAttr(name="fc_1_offset")) return out def _make_divisible(self, v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v def conv_bn_layer(self, input, num_filters, filter_size, stride=1, groups=1, act=None, name=None): x = fluid.layers.conv2d(input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, param_attr=ParamAttr( initializer=fluid.initializer.MSRA(), name=name + "_weights"), bias_attr=False) bn_name = name + "_bn" x = fluid.layers.batch_norm(input=x, act=act, param_attr=ParamAttr( name=bn_name + "_scale", regularizer=fluid.regularizer.L2DecayRegularizer( regularization_coeff=0.0)), bias_attr=ParamAttr( name=bn_name + "_offset", regularizer=fluid.regularizer.L2DecayRegularizer( regularization_coeff=0.0)), moving_mean_name=bn_name + "_mean", moving_variance_name=name + "_variance") return x def se_block(self, input, num_channels, reduction_ratio=4, name=None): pool = fluid.layers.pool2d(input=input, pool_type='avg', global_pooling=True, use_cudnn=False) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) squeeze = fluid.layers.fc(input=pool, size=num_channels // reduction_ratio, act='relu', param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=name + '_1_weights'), bias_attr=ParamAttr(name=name + '_1_offset')) stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0) excitation = fluid.layers.fc(input=squeeze, size=num_channels, act=None, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=name + '_2_weights'), bias_attr=ParamAttr(name=name + '_2_offset')) excitation = fluid.layers.clip(x=excitation, min=0, max=1) se_scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0) return se_scale def depthwise_conv(self, input, output, kernel_size, stride=1, relu=False, name=None): return self.conv_bn_layer(input=input, num_filters=output, filter_size=kernel_size, stride=stride, groups=input.shape[1], act="relu" if relu else None, name=name + "_depthwise") def ghost_module(self, input, output, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True, name=None): self.output = output init_channels = int(math.ceil(output / ratio)) new_channels = int(init_channels * (ratio - 1)) primary_conv = self.conv_bn_layer(input=input, num_filters=init_channels, filter_size=kernel_size, stride=stride, groups=1, act="relu" if relu else None, name=name + "_primary_conv") cheap_operation = self.conv_bn_layer(input=primary_conv, num_filters=new_channels, filter_size=dw_size, stride=1, groups=init_channels, act="relu" if relu else None, name=name + "_cheap_operation") out = fluid.layers.concat([primary_conv, cheap_operation], axis=1) return out def ghost_bottleneck(self, input, hidden_dim, output, kernel_size, stride, use_se, name=None): inp_channels = input.shape[1] x = self.ghost_module(input=input, output=hidden_dim, kernel_size=1, stride=1, relu=True, name=name + "_ghost_module_1") if stride == 2: x = self.depthwise_conv(input=x, output=hidden_dim, kernel_size=kernel_size, stride=stride, relu=False, name=name + "_depthwise") if use_se: x = self.se_block(input=x, num_channels=hidden_dim, name=name + "_se") x = self.ghost_module(input=x, output=output, kernel_size=1, relu=False, name=name + "_ghost_module_2") if stride == 1 and inp_channels == output: shortcut = input else: shortcut = self.depthwise_conv(input=input, output=inp_channels, kernel_size=kernel_size, stride=stride, relu=False, name=name + "_shortcut_depthwise") shortcut = self.conv_bn_layer(input=shortcut, num_filters=output, filter_size=1, stride=1, groups=1, act=None, name=name + "_shortcut_conv") return fluid.layers.elementwise_add(x=x, y=shortcut, axis=-1) def GhostNet_x0_5(): model = GhostNet(scale=0.5) return model def GhostNet_x1_0(): model = GhostNet(scale=1.0) return model def GhostNet_x1_3(): model = GhostNet(scale=1.3) return model