# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # reference: https://arxiv.org/abs/1709.01507 import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import Conv2D, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "SqueezeNet1_0": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams", "SqueezeNet1_1": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams", } __all__ = list(MODEL_URLS.keys()) class MakeFireConv(nn.Layer): def __init__(self, input_channels, output_channels, filter_size, padding=0, name=None): super(MakeFireConv, self).__init__() self._conv = Conv2D( input_channels, output_channels, filter_size, padding=padding, weight_attr=ParamAttr(name=name + "_weights"), bias_attr=ParamAttr(name=name + "_offset")) def forward(self, x): x = self._conv(x) x = F.relu(x) return x class MakeFire(nn.Layer): def __init__(self, input_channels, squeeze_channels, expand1x1_channels, expand3x3_channels, name=None): super(MakeFire, self).__init__() self._conv = MakeFireConv( input_channels, squeeze_channels, 1, name=name + "_squeeze1x1") self._conv_path1 = MakeFireConv( squeeze_channels, expand1x1_channels, 1, name=name + "_expand1x1") self._conv_path2 = MakeFireConv( squeeze_channels, expand3x3_channels, 3, padding=1, name=name + "_expand3x3") def forward(self, inputs): x = self._conv(inputs) x1 = self._conv_path1(x) x2 = self._conv_path2(x) return paddle.concat([x1, x2], axis=1) class SqueezeNet(nn.Layer): def __init__(self, version, class_num=1000): super(SqueezeNet, self).__init__() self.version = version if self.version == "1.0": self._conv = Conv2D( 3, 96, 7, stride=2, weight_attr=ParamAttr(name="conv1_weights"), bias_attr=ParamAttr(name="conv1_offset")) self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0) self._conv1 = MakeFire(96, 16, 64, 64, name="fire2") self._conv2 = MakeFire(128, 16, 64, 64, name="fire3") self._conv3 = MakeFire(128, 32, 128, 128, name="fire4") self._conv4 = MakeFire(256, 32, 128, 128, name="fire5") self._conv5 = MakeFire(256, 48, 192, 192, name="fire6") self._conv6 = MakeFire(384, 48, 192, 192, name="fire7") self._conv7 = MakeFire(384, 64, 256, 256, name="fire8") self._conv8 = MakeFire(512, 64, 256, 256, name="fire9") else: self._conv = Conv2D( 3, 64, 3, stride=2, padding=1, weight_attr=ParamAttr(name="conv1_weights"), bias_attr=ParamAttr(name="conv1_offset")) self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0) self._conv1 = MakeFire(64, 16, 64, 64, name="fire2") self._conv2 = MakeFire(128, 16, 64, 64, name="fire3") self._conv3 = MakeFire(128, 32, 128, 128, name="fire4") self._conv4 = MakeFire(256, 32, 128, 128, name="fire5") self._conv5 = MakeFire(256, 48, 192, 192, name="fire6") self._conv6 = MakeFire(384, 48, 192, 192, name="fire7") self._conv7 = MakeFire(384, 64, 256, 256, name="fire8") self._conv8 = MakeFire(512, 64, 256, 256, name="fire9") self._drop = Dropout(p=0.5, mode="downscale_in_infer") self._conv9 = Conv2D( 512, class_num, 1, weight_attr=ParamAttr(name="conv10_weights"), bias_attr=ParamAttr(name="conv10_offset")) self._avg_pool = AdaptiveAvgPool2D(1) def forward(self, inputs): x = self._conv(inputs) x = F.relu(x) x = self._pool(x) if self.version == "1.0": x = self._conv1(x) x = self._conv2(x) x = self._conv3(x) x = self._pool(x) x = self._conv4(x) x = self._conv5(x) x = self._conv6(x) x = self._conv7(x) x = self._pool(x) x = self._conv8(x) else: x = self._conv1(x) x = self._conv2(x) x = self._pool(x) x = self._conv3(x) x = self._conv4(x) x = self._pool(x) x = self._conv5(x) x = self._conv6(x) x = self._conv7(x) x = self._conv8(x) x = self._drop(x) x = self._conv9(x) x = F.relu(x) x = self._avg_pool(x) x = paddle.squeeze(x, axis=[2, 3]) return x def _load_pretrained(pretrained, model, model_url, use_ssld=False): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def SqueezeNet1_0(pretrained=False, use_ssld=False, **kwargs): model = SqueezeNet(version="1.0", **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SqueezeNet1_0"], use_ssld=use_ssld) return model def SqueezeNet1_1(pretrained=False, use_ssld=False, **kwargs): model = SqueezeNet(version="1.1", **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SqueezeNet1_1"], use_ssld=use_ssld) return model