# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # reference: https://arxiv.org/abs/1611.05431 & https://arxiv.org/abs/1709.01507 from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import Conv2D, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from paddle.nn.initializer import Uniform import math from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "SE_ResNeXt50_32x4d": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams", "SE_ResNeXt101_32x4d": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams", "SE_ResNeXt152_64x4d": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt152_64x4d_pretrained.pdparams", } __all__ = list(MODEL_URLS.keys()) class ConvBNLayer(nn.Layer): def __init__(self, num_channels, num_filters, filter_size, stride=1, groups=1, act=None, name=None, data_format='NCHW'): super(ConvBNLayer, self).__init__() self._conv = Conv2D( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, weight_attr=ParamAttr(name=name + "_weights"), bias_attr=False, data_format=data_format) bn_name = name + '_bn' self._batch_norm = BatchNorm( num_filters, act=act, param_attr=ParamAttr(name=bn_name + '_scale'), bias_attr=ParamAttr(bn_name + '_offset'), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance', data_layout=data_format) def forward(self, inputs): y = self._conv(inputs) y = self._batch_norm(y) return y class BottleneckBlock(nn.Layer): def __init__(self, num_channels, num_filters, stride, cardinality, reduction_ratio, shortcut=True, if_first=False, name=None, data_format="NCHW"): super(BottleneckBlock, self).__init__() self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, act='relu', name='conv' + name + '_x1', data_format=data_format) self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, groups=cardinality, stride=stride, act='relu', name='conv' + name + '_x2', data_format=data_format) self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * 2 if cardinality == 32 else num_filters, filter_size=1, act=None, name='conv' + name + '_x3', data_format=data_format) self.scale = SELayer( num_channels=num_filters * 2 if cardinality == 32 else num_filters, num_filters=num_filters * 2 if cardinality == 32 else num_filters, reduction_ratio=reduction_ratio, name='fc' + name, data_format=data_format) if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters * 2 if cardinality == 32 else num_filters, filter_size=1, stride=stride, name='conv' + name + '_prj', data_format=data_format) self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) conv2 = self.conv2(conv1) scale = self.scale(conv2) if self.shortcut: short = inputs else: short = self.short(inputs) y = paddle.add(x=short, y=scale) y = F.relu(y) return y class SELayer(nn.Layer): def __init__(self, num_channels, num_filters, reduction_ratio, name=None, data_format="NCHW"): super(SELayer, self).__init__() self.data_format = data_format self.pool2d_gap = AdaptiveAvgPool2D(1, data_format=self.data_format) self._num_channels = num_channels med_ch = int(num_channels / reduction_ratio) stdv = 1.0 / math.sqrt(num_channels * 1.0) self.squeeze = Linear( num_channels, med_ch, weight_attr=ParamAttr( initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"), bias_attr=ParamAttr(name=name + '_sqz_offset')) self.relu = nn.ReLU() stdv = 1.0 / math.sqrt(med_ch * 1.0) self.excitation = Linear( med_ch, num_filters, weight_attr=ParamAttr( initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"), bias_attr=ParamAttr(name=name + '_exc_offset')) self.sigmoid = nn.Sigmoid() def forward(self, input): pool = self.pool2d_gap(input) if self.data_format == "NHWC": pool = paddle.squeeze(pool, axis=[1, 2]) else: pool = paddle.squeeze(pool, axis=[2, 3]) squeeze = self.squeeze(pool) squeeze = self.relu(squeeze) excitation = self.excitation(squeeze) excitation = self.sigmoid(excitation) if self.data_format == "NHWC": excitation = paddle.unsqueeze(excitation, axis=[1, 2]) else: excitation = paddle.unsqueeze(excitation, axis=[2, 3]) out = input * excitation return out class ResNeXt(nn.Layer): def __init__(self, layers=50, class_num=1000, cardinality=32, input_image_channel=3, data_format="NCHW"): super(ResNeXt, self).__init__() self.layers = layers self.cardinality = cardinality self.reduction_ratio = 16 self.data_format = data_format self.input_image_channel = input_image_channel supported_layers = [50, 101, 152] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format( supported_layers, layers) supported_cardinality = [32, 64] assert cardinality in supported_cardinality, \ "supported cardinality is {} but input cardinality is {}" \ .format(supported_cardinality, cardinality) if layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] num_channels = [64, 256, 512, 1024] num_filters = [128, 256, 512, 1024] if cardinality == 32 else [256, 512, 1024, 2048] if layers < 152: self.conv = ConvBNLayer( num_channels=self.input_image_channel, num_filters=64, filter_size=7, stride=2, act='relu', name="conv1", data_format=self.data_format) else: self.conv1_1 = ConvBNLayer( num_channels=self.input_image_channel, num_filters=64, filter_size=3, stride=2, act='relu', name="conv1", data_format=self.data_format) self.conv1_2 = ConvBNLayer( num_channels=64, num_filters=64, filter_size=3, stride=1, act='relu', name="conv2", data_format=self.data_format) self.conv1_3 = ConvBNLayer( num_channels=64, num_filters=128, filter_size=3, stride=1, act='relu', name="conv3", data_format=self.data_format) self.pool2d_max = MaxPool2D( kernel_size=3, stride=2, padding=1, data_format=self.data_format) self.block_list = [] n = 1 if layers == 50 or layers == 101 else 3 for block in range(len(depth)): n += 1 shortcut = False for i in range(depth[block]): bottleneck_block = self.add_sublayer( 'bb_%d_%d' % (block, i), BottleneckBlock( num_channels=num_channels[block] if i == 0 else num_filters[block] * int(64 // self.cardinality), num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, cardinality=self.cardinality, reduction_ratio=self.reduction_ratio, shortcut=shortcut, if_first=block == 0, name=str(n) + '_' + str(i + 1), data_format=self.data_format)) self.block_list.append(bottleneck_block) shortcut = True self.pool2d_avg = AdaptiveAvgPool2D(1, data_format=self.data_format) self.pool2d_avg_channels = num_channels[-1] * 2 stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0) self.out = Linear( self.pool2d_avg_channels, class_num, weight_attr=ParamAttr( initializer=Uniform(-stdv, stdv), name="fc6_weights"), bias_attr=ParamAttr(name="fc6_offset")) def forward(self, inputs): with paddle.static.amp.fp16_guard(): if self.data_format == "NHWC": inputs = paddle.tensor.transpose(inputs, [0, 2, 3, 1]) inputs.stop_gradient = True if self.layers < 152: y = self.conv(inputs) else: y = self.conv1_1(inputs) y = self.conv1_2(y) y = self.conv1_3(y) y = self.pool2d_max(y) for i, block in enumerate(self.block_list): y = block(y) y = self.pool2d_avg(y) y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels]) y = self.out(y) return y def _load_pretrained(pretrained, model, model_url, use_ssld=False): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def SE_ResNeXt50_32x4d(pretrained=False, use_ssld=False, **kwargs): model = ResNeXt(layers=50, cardinality=32, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SE_ResNeXt50_32x4d"], use_ssld=use_ssld) return model def SE_ResNeXt101_32x4d(pretrained=False, use_ssld=False, **kwargs): model = ResNeXt(layers=101, cardinality=32, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SE_ResNeXt101_32x4d"], use_ssld=use_ssld) return model def SE_ResNeXt152_64x4d(pretrained=False, use_ssld=False, **kwargs): model = ResNeXt(layers=152, cardinality=64, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SE_ResNeXt152_64x4d"], use_ssld=use_ssld) return model