# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import paddle import paddle.nn as nn from paddle import ParamAttr from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Dropout, Linear from paddle.regularizer import L2Decay from paddle.nn.initializer import KaimingNormal from ppcls.arch.backbone.base.theseus_layer import TheseusLayer from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "PPLCNet_x0_25": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams", "PPLCNet_x0_35": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams", "PPLCNet_x0_5": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams", "PPLCNet_x0_75": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams", "PPLCNet_x1_0": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams", "PPLCNet_x1_5": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams", "PPLCNet_x2_0": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams", "PPLCNet_x2_5": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams" } MODEL_STAGES_PATTERN = { "PPLCNet": ["blocks2", "blocks3", "blocks4", "blocks5", "blocks6"] } __all__ = list(MODEL_URLS.keys()) # Each element(list) represents a depthwise block, which is composed of k, in_c, out_c, s, use_se. # k: kernel_size # in_c: input channel number in depthwise block # out_c: output channel number in depthwise block # s: stride in depthwise block # use_se: whether to use SE block NET_CONFIG = { "blocks2": #k, in_c, out_c, s, use_se [[3, 16, 32, 1, False]], "blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]], "blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]], "blocks5": [[3, 128, 256, 2, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False]], "blocks6": [[5, 256, 512, 2, True], [5, 512, 512, 1, True]] } def make_divisible(v, divisor=8, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class ConvBNLayer(TheseusLayer): def __init__(self, num_channels, filter_size, num_filters, stride, num_groups=1): super().__init__() self.conv = Conv2D( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=num_groups, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False) self.bn = BatchNorm( num_filters, param_attr=ParamAttr(regularizer=L2Decay(0.0)), bias_attr=ParamAttr(regularizer=L2Decay(0.0))) self.hardswish = nn.Hardswish() def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.hardswish(x) return x class DepthwiseSeparable(TheseusLayer): def __init__(self, num_channels, num_filters, stride, dw_size=3, use_se=False): super().__init__() self.use_se = use_se self.dw_conv = ConvBNLayer( num_channels=num_channels, num_filters=num_channels, filter_size=dw_size, stride=stride, num_groups=num_channels) if use_se: self.se = SEModule(num_channels) self.pw_conv = ConvBNLayer( num_channels=num_channels, filter_size=1, num_filters=num_filters, stride=1) def forward(self, x): x = self.dw_conv(x) if self.use_se: x = self.se(x) x = self.pw_conv(x) return x class SEModule(TheseusLayer): def __init__(self, channel, reduction=4): super().__init__() self.avg_pool = AdaptiveAvgPool2D(1) self.conv1 = Conv2D( in_channels=channel, out_channels=channel // reduction, kernel_size=1, stride=1, padding=0) self.relu = nn.ReLU() self.conv2 = Conv2D( in_channels=channel // reduction, out_channels=channel, kernel_size=1, stride=1, padding=0) self.hardsigmoid = nn.Hardsigmoid() def forward(self, x): identity = x x = self.avg_pool(x) x = self.conv1(x) x = self.relu(x) x = self.conv2(x) x = self.hardsigmoid(x) x = paddle.multiply(x=identity, y=x) return x class PPLCNet(TheseusLayer): def __init__(self, stages_pattern, scale=1.0, class_num=1000, dropout_prob=0.2, class_expand=1280, return_patterns=None, return_stages=None): super().__init__() self.scale = scale self.class_expand = class_expand self.conv1 = ConvBNLayer( num_channels=3, filter_size=3, num_filters=make_divisible(16 * scale), stride=2) self.blocks2 = nn.Sequential(* [ DepthwiseSeparable( num_channels=make_divisible(in_c * scale), num_filters=make_divisible(out_c * scale), dw_size=k, stride=s, use_se=se) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks2"]) ]) self.blocks3 = nn.Sequential(* [ DepthwiseSeparable( num_channels=make_divisible(in_c * scale), num_filters=make_divisible(out_c * scale), dw_size=k, stride=s, use_se=se) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks3"]) ]) self.blocks4 = nn.Sequential(* [ DepthwiseSeparable( num_channels=make_divisible(in_c * scale), num_filters=make_divisible(out_c * scale), dw_size=k, stride=s, use_se=se) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks4"]) ]) self.blocks5 = nn.Sequential(* [ DepthwiseSeparable( num_channels=make_divisible(in_c * scale), num_filters=make_divisible(out_c * scale), dw_size=k, stride=s, use_se=se) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks5"]) ]) self.blocks6 = nn.Sequential(* [ DepthwiseSeparable( num_channels=make_divisible(in_c * scale), num_filters=make_divisible(out_c * scale), dw_size=k, stride=s, use_se=se) for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks6"]) ]) self.avg_pool = AdaptiveAvgPool2D(1) self.last_conv = Conv2D( in_channels=make_divisible(NET_CONFIG["blocks6"][-1][2] * scale), out_channels=self.class_expand, kernel_size=1, stride=1, padding=0, bias_attr=False) self.hardswish = nn.Hardswish() self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer") self.flatten = nn.Flatten(start_axis=1, stop_axis=-1) self.fc = Linear(self.class_expand, class_num) super().init_res( stages_pattern, return_patterns=return_patterns, return_stages=return_stages) def forward(self, x): x = self.conv1(x) x = self.blocks2(x) x = self.blocks3(x) x = self.blocks4(x) x = self.blocks5(x) x = self.blocks6(x) x = self.avg_pool(x) x = self.last_conv(x) x = self.hardswish(x) x = self.dropout(x) x = self.flatten(x) x = self.fc(x) return x def _load_pretrained(pretrained, model, model_url, use_ssld): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def PPLCNet_x0_25(pretrained=False, use_ssld=False, **kwargs): """ PPLCNet_x0_25 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `PPLCNet_x0_25` model depends on args. """ model = PPLCNet( scale=0.25, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_25"], use_ssld) return model def PPLCNet_x0_35(pretrained=False, use_ssld=False, **kwargs): """ PPLCNet_x0_35 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `PPLCNet_x0_35` model depends on args. """ model = PPLCNet( scale=0.35, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_35"], use_ssld) return model def PPLCNet_x0_5(pretrained=False, use_ssld=False, **kwargs): """ PPLCNet_x0_5 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `PPLCNet_x0_5` model depends on args. """ model = PPLCNet( scale=0.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_5"], use_ssld) return model def PPLCNet_x0_75(pretrained=False, use_ssld=False, **kwargs): """ PPLCNet_x0_75 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `PPLCNet_x0_75` model depends on args. """ model = PPLCNet( scale=0.75, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x0_75"], use_ssld) return model def PPLCNet_x1_0(pretrained=False, use_ssld=False, **kwargs): """ PPLCNet_x1_0 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `PPLCNet_x1_0` model depends on args. """ model = PPLCNet( scale=1.0, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x1_0"], use_ssld) return model def PPLCNet_x1_5(pretrained=False, use_ssld=False, **kwargs): """ PPLCNet_x1_5 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `PPLCNet_x1_5` model depends on args. """ model = PPLCNet( scale=1.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x1_5"], use_ssld) return model def PPLCNet_x2_0(pretrained=False, use_ssld=False, **kwargs): """ PPLCNet_x2_0 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `PPLCNet_x2_0` model depends on args. """ model = PPLCNet( scale=2.0, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x2_0"], use_ssld) return model def PPLCNet_x2_5(pretrained=False, use_ssld=False, **kwargs): """ PPLCNet_x2_5 Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `PPLCNet_x2_5` model depends on args. """ model = PPLCNet( scale=2.5, stages_pattern=MODEL_STAGES_PATTERN["PPLCNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["PPLCNet_x2_5"], use_ssld) return model