#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import copy import importlib import paddle.nn as nn from paddle.jit import to_static from paddle.static import InputSpec from . import backbone, gears from .backbone import * from .gears import build_gear from .utils import * from .backbone.base.theseus_layer import TheseusLayer from ..utils import logger from ..utils.save_load import load_dygraph_pretrain from .slim import prune_model, quantize_model from .distill.afd_attention import LinearTransformStudent, LinearTransformTeacher __all__ = ["build_model", "RecModel", "DistillationModel", "AttentionModel"] def build_model(config, mode="train"): arch_config = copy.deepcopy(config["Arch"]) model_type = arch_config.pop("name") use_sync_bn = arch_config.pop("use_sync_bn", False) mod = importlib.import_module(__name__) arch = getattr(mod, model_type)(**arch_config) if use_sync_bn: arch = nn.SyncBatchNorm.convert_sync_batchnorm(arch) if isinstance(arch, TheseusLayer): prune_model(config, arch) quantize_model(config, arch, mode) return arch def apply_to_static(config, model): support_to_static = config['Global'].get('to_static', False) if support_to_static: specs = None if 'image_shape' in config['Global']: specs = [InputSpec([None] + config['Global']['image_shape'])] specs[0].stop_gradient = True model = to_static(model, input_spec=specs) logger.info("Successfully to apply @to_static with specs: {}".format( specs)) return model class RecModel(TheseusLayer): def __init__(self, **config): super().__init__() backbone_config = config["Backbone"] backbone_name = backbone_config.pop("name") self.backbone = eval(backbone_name)(**backbone_config) if "BackboneStopLayer" in config: backbone_stop_layer = config["BackboneStopLayer"]["name"] self.backbone.stop_after(backbone_stop_layer) if "Neck" in config: self.neck = build_gear(config["Neck"]) else: self.neck = None if "Head" in config: self.head = build_gear(config["Head"]) else: self.head = None def forward(self, x, label=None): out = dict() x = self.backbone(x) out["backbone"] = x if self.neck is not None: x = self.neck(x) out["neck"] = x out["features"] = x if self.head is not None: y = self.head(x, label) out["logits"] = y return out class DistillationModel(nn.Layer): def __init__(self, models=None, pretrained_list=None, freeze_params_list=None, **kargs): super().__init__() assert isinstance(models, list) self.model_list = [] self.model_name_list = [] if pretrained_list is not None: assert len(pretrained_list) == len(models) if freeze_params_list is None: freeze_params_list = [False] * len(models) assert len(freeze_params_list) == len(models) for idx, model_config in enumerate(models): assert len(model_config) == 1 key = list(model_config.keys())[0] model_config = model_config[key] model_name = model_config.pop("name") model = eval(model_name)(**model_config) if freeze_params_list[idx]: for param in model.parameters(): param.trainable = False self.model_list.append(self.add_sublayer(key, model)) self.model_name_list.append(key) if pretrained_list is not None: for idx, pretrained in enumerate(pretrained_list): if pretrained is not None: load_dygraph_pretrain( self.model_name_list[idx], path=pretrained) def forward(self, x, label=None): result_dict = dict() for idx, model_name in enumerate(self.model_name_list): if label is None: result_dict[model_name] = self.model_list[idx](x) else: result_dict[model_name] = self.model_list[idx](x, label) return result_dict class AttentionModel(DistillationModel): def __init__(self, models=None, pretrained_list=None, freeze_params_list=None, **kargs): super().__init__(models, pretrained_list, freeze_params_list, **kargs) def forward(self, x, label=None): result_dict = dict() out = x for idx, model_name in enumerate(self.model_name_list): if label is None: out = self.model_list[idx](out) result_dict.update(out) else: out = self.model_list[idx](out, label) result_dict.update(out) return result_dict