# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import copy import numpy as np import cv2 import faiss import pickle from paddleclas.deploy.utils import logger, config from paddleclas.deploy.utils.get_image_list import get_image_list from paddleclas.deploy.utils.draw_bbox import draw_bbox_results from paddleclas.deploy.python.predict_rec import RecPredictor from paddleclas.deploy.python.predict_det import DetPredictor class SystemPredictor(object): def __init__(self, config): self.config = config self.rec_predictor = RecPredictor(config) if not config["Global"]["det_inference_model_dir"]: logger.info( f"find 'Global.det_inference_model_dir' empty({config['Global']['det_inference_model_dir']}), so det_predictor is disabled" ) self.det_predictor = None else: self.det_predictor = DetPredictor(config) assert 'IndexProcess' in config.keys(), "Index config not found ... " self.return_k = self.config['IndexProcess']['return_k'] index_dir = self.config["IndexProcess"]["index_dir"] assert os.path.exists(os.path.join( index_dir, "vector.index")), "vector.index not found ..." assert os.path.exists(os.path.join( index_dir, "id_map.pkl")), "id_map.pkl not found ... " if config['IndexProcess'].get("dist_type") == "hamming": self.Searcher = faiss.read_index_binary( os.path.join(index_dir, "vector.index")) else: self.Searcher = faiss.read_index( os.path.join(index_dir, "vector.index")) with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd: self.id_map = pickle.load(fd) def append_self(self, results, shape): results.append({ "class_id": 0, "score": 1.0, "bbox": np.array([0, 0, shape[1], shape[0]]), # xmin, ymin, xmax, ymax "label_name": "foreground", }) return results def nms_to_rec_results(self, results, thresh=0.1): filtered_results = [] x1 = np.array([r["bbox"][0] for r in results]).astype("float32") y1 = np.array([r["bbox"][1] for r in results]).astype("float32") x2 = np.array([r["bbox"][2] for r in results]).astype("float32") y2 = np.array([r["bbox"][3] for r in results]).astype("float32") scores = np.array([r["rec_scores"] for r in results]) areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] while order.size > 0: i = order[0] xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] filtered_results.append(results[i]) return filtered_results def predict(self, img): output = [] # st1: get all detection results if self.det_predictor: results = self.det_predictor.predict(img) else: results = [] # st2: add the whole image for recognition to improve recall results = self.append_self(results, img.shape) # st3: recognition process, use score_thres to ensure accuracy for result in results: preds = {} xmin, ymin, xmax, ymax = result["bbox"].astype("int") crop_img = img[ymin:ymax, xmin:xmax, :].copy() rec_results = self.rec_predictor.predict(crop_img) preds["bbox"] = [xmin, ymin, xmax, ymax] scores, docs = self.Searcher.search(rec_results, self.return_k) # just top-1 result will be returned for the final if self.config["IndexProcess"]["dist_type"] == "hamming": if scores[0][0] <= self.config["IndexProcess"][ "hamming_radius"]: preds["rec_docs"] = self.id_map[docs[0][0]].split()[1] preds["rec_scores"] = scores[0][0] output.append(preds) else: if scores[0][0] >= self.config["IndexProcess"]["score_thres"]: preds["rec_docs"] = self.id_map[docs[0][0]].split()[1] preds["rec_scores"] = scores[0][0] output.append(preds) # st5: nms to the final results to avoid fetching duplicate results output = self.nms_to_rec_results( output, self.config["Global"]["rec_nms_thresold"]) return output def main(config): system_predictor = SystemPredictor(config) image_list = get_image_list(config["Global"]["infer_imgs"]) assert config["Global"]["batch_size"] == 1 for idx, image_file in enumerate(image_list): img = cv2.imread(image_file)[:, :, ::-1] output = system_predictor.predict(img) draw_bbox_results(img, output, image_file) print(output) return if __name__ == "__main__": args = config.parse_args() config = config.get_config(args.config, overrides=args.override, show=True) main(config)