# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # reference: https://arxiv.org/abs/1812.01187 & https://arxiv.org/abs/1709.01507 from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import Conv2D, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from paddle.nn.initializer import Uniform import math from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "SE_ResNet18_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams", "SE_ResNet34_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams", "SE_ResNet50_vd": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams", } __all__ = list(MODEL_URLS.keys()) class ConvBNLayer(nn.Layer): def __init__( self, num_channels, num_filters, filter_size, stride=1, groups=1, is_vd_mode=False, act=None, name=None, ): super(ConvBNLayer, self).__init__() self.is_vd_mode = is_vd_mode self._pool2d_avg = AvgPool2D( kernel_size=2, stride=2, padding=0, ceil_mode=True) self._conv = Conv2D( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, weight_attr=ParamAttr(name=name + "_weights"), bias_attr=False) if name == "conv1": bn_name = "bn_" + name else: bn_name = "bn" + name[3:] self._batch_norm = BatchNorm( num_filters, act=act, param_attr=ParamAttr(name=bn_name + '_scale'), bias_attr=ParamAttr(bn_name + '_offset'), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance') def forward(self, inputs): if self.is_vd_mode: inputs = self._pool2d_avg(inputs) y = self._conv(inputs) y = self._batch_norm(y) return y class BottleneckBlock(nn.Layer): def __init__(self, num_channels, num_filters, stride, shortcut=True, if_first=False, reduction_ratio=16, name=None): super(BottleneckBlock, self).__init__() self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a") self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=stride, act='relu', name=name + "_branch2b") self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * 4, filter_size=1, act=None, name=name + "_branch2c") self.scale = SELayer( num_channels=num_filters * 4, num_filters=num_filters * 4, reduction_ratio=reduction_ratio, name='fc_' + name) if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters * 4, filter_size=1, stride=1, is_vd_mode=False if if_first else True, name=name + "_branch1") self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) conv2 = self.conv2(conv1) scale = self.scale(conv2) if self.shortcut: short = inputs else: short = self.short(inputs) y = paddle.add(x=short, y=scale) y = F.relu(y) return y class BasicBlock(nn.Layer): def __init__(self, num_channels, num_filters, stride, shortcut=True, if_first=False, reduction_ratio=16, name=None): super(BasicBlock, self).__init__() self.stride = stride self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=3, stride=stride, act='relu', name=name + "_branch2a") self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, act=None, name=name + "_branch2b") self.scale = SELayer( num_channels=num_filters, num_filters=num_filters, reduction_ratio=reduction_ratio, name='fc_' + name) if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, stride=1, is_vd_mode=False if if_first else True, name=name + "_branch1") self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) scale = self.scale(conv1) if self.shortcut: short = inputs else: short = self.short(inputs) y = paddle.add(x=short, y=scale) y = F.relu(y) return y class SELayer(nn.Layer): def __init__(self, num_channels, num_filters, reduction_ratio, name=None): super(SELayer, self).__init__() self.pool2d_gap = AdaptiveAvgPool2D(1) self._num_channels = num_channels med_ch = int(num_channels / reduction_ratio) stdv = 1.0 / math.sqrt(num_channels * 1.0) self.squeeze = Linear( num_channels, med_ch, weight_attr=ParamAttr( initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"), bias_attr=ParamAttr(name=name + '_sqz_offset')) stdv = 1.0 / math.sqrt(med_ch * 1.0) self.excitation = Linear( med_ch, num_filters, weight_attr=ParamAttr( initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"), bias_attr=ParamAttr(name=name + '_exc_offset')) def forward(self, input): pool = self.pool2d_gap(input) pool = paddle.squeeze(pool, axis=[2, 3]) squeeze = self.squeeze(pool) squeeze = F.relu(squeeze) excitation = self.excitation(squeeze) excitation = F.sigmoid(excitation) excitation = paddle.unsqueeze(excitation, axis=[2, 3]) out = input * excitation return out class SE_ResNet_vd(nn.Layer): def __init__(self, layers=50, class_num=1000): super(SE_ResNet_vd, self).__init__() self.layers = layers supported_layers = [18, 34, 50, 101, 152, 200] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format( supported_layers, layers) if layers == 18: depth = [2, 2, 2, 2] elif layers == 34 or layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] elif layers == 200: depth = [3, 12, 48, 3] num_channels = [64, 256, 512, 1024] if layers >= 50 else [64, 64, 128, 256] num_filters = [64, 128, 256, 512] self.conv1_1 = ConvBNLayer( num_channels=3, num_filters=32, filter_size=3, stride=2, act='relu', name="conv1_1") self.conv1_2 = ConvBNLayer( num_channels=32, num_filters=32, filter_size=3, stride=1, act='relu', name="conv1_2") self.conv1_3 = ConvBNLayer( num_channels=32, num_filters=64, filter_size=3, stride=1, act='relu', name="conv1_3") self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1) self.block_list = [] if layers >= 50: for block in range(len(depth)): shortcut = False for i in range(depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = "res" + str(block + 2) + "a" else: conv_name = "res" + str(block + 2) + "b" + str(i) else: conv_name = "res" + str(block + 2) + chr(97 + i) bottleneck_block = self.add_sublayer( 'bb_%d_%d' % (block, i), BottleneckBlock( num_channels=num_channels[block] if i == 0 else num_filters[block] * 4, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, shortcut=shortcut, if_first=block == i == 0, name=conv_name)) self.block_list.append(bottleneck_block) shortcut = True else: for block in range(len(depth)): shortcut = False for i in range(depth[block]): conv_name = "res" + str(block + 2) + chr(97 + i) basic_block = self.add_sublayer( 'bb_%d_%d' % (block, i), BasicBlock( num_channels=num_channels[block] if i == 0 else num_filters[block], num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, shortcut=shortcut, if_first=block == i == 0, name=conv_name)) self.block_list.append(basic_block) shortcut = True self.pool2d_avg = AdaptiveAvgPool2D(1) self.pool2d_avg_channels = num_channels[-1] * 2 stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0) self.out = Linear( self.pool2d_avg_channels, class_num, weight_attr=ParamAttr( initializer=Uniform(-stdv, stdv), name="fc6_weights"), bias_attr=ParamAttr(name="fc6_offset")) def forward(self, inputs): y = self.conv1_1(inputs) y = self.conv1_2(y) y = self.conv1_3(y) y = self.pool2d_max(y) for block in self.block_list: y = block(y) y = self.pool2d_avg(y) y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels]) y = self.out(y) return y def _load_pretrained(pretrained, model, model_url, use_ssld=False): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def SE_ResNet18_vd(pretrained=False, use_ssld=False, **kwargs): model = SE_ResNet_vd(layers=18, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SE_ResNet18_vd"], use_ssld=use_ssld) return model def SE_ResNet34_vd(pretrained=False, use_ssld=False, **kwargs): model = SE_ResNet_vd(layers=34, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SE_ResNet34_vd"], use_ssld=use_ssld) return model def SE_ResNet50_vd(pretrained=False, use_ssld=False, **kwargs): model = SE_ResNet_vd(layers=50, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["SE_ResNet50_vd"], use_ssld=use_ssld) return model