# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # reference: https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import Conv2D, BatchNorm, Linear, Dropout, ReLU from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from paddle.nn.initializer import Uniform import math from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "AlexNet": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams" } __all__ = list(MODEL_URLS.keys()) class ConvPoolLayer(nn.Layer): def __init__(self, input_channels, output_channels, filter_size, stride, padding, stdv, groups=1, act=None, name=None): super(ConvPoolLayer, self).__init__() self.relu = ReLU() if act == "relu" else None self._conv = Conv2D( in_channels=input_channels, out_channels=output_channels, kernel_size=filter_size, stride=stride, padding=padding, groups=groups, weight_attr=ParamAttr( name=name + "_weights", initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( name=name + "_offset", initializer=Uniform(-stdv, stdv))) self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0) def forward(self, inputs): x = self._conv(inputs) if self.relu is not None: x = self.relu(x) x = self._pool(x) return x class AlexNetDY(nn.Layer): def __init__(self, class_num=1000): super(AlexNetDY, self).__init__() stdv = 1.0 / math.sqrt(3 * 11 * 11) self._conv1 = ConvPoolLayer( 3, 64, 11, 4, 2, stdv, act="relu", name="conv1") stdv = 1.0 / math.sqrt(64 * 5 * 5) self._conv2 = ConvPoolLayer( 64, 192, 5, 1, 2, stdv, act="relu", name="conv2") stdv = 1.0 / math.sqrt(192 * 3 * 3) self._conv3 = Conv2D( 192, 384, 3, stride=1, padding=1, weight_attr=ParamAttr( name="conv3_weights", initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( name="conv3_offset", initializer=Uniform(-stdv, stdv))) stdv = 1.0 / math.sqrt(384 * 3 * 3) self._conv4 = Conv2D( 384, 256, 3, stride=1, padding=1, weight_attr=ParamAttr( name="conv4_weights", initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( name="conv4_offset", initializer=Uniform(-stdv, stdv))) stdv = 1.0 / math.sqrt(256 * 3 * 3) self._conv5 = ConvPoolLayer( 256, 256, 3, 1, 1, stdv, act="relu", name="conv5") stdv = 1.0 / math.sqrt(256 * 6 * 6) self._drop1 = Dropout(p=0.5, mode="downscale_in_infer") self._fc6 = Linear( in_features=256 * 6 * 6, out_features=4096, weight_attr=ParamAttr( name="fc6_weights", initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( name="fc6_offset", initializer=Uniform(-stdv, stdv))) self._drop2 = Dropout(p=0.5, mode="downscale_in_infer") self._fc7 = Linear( in_features=4096, out_features=4096, weight_attr=ParamAttr( name="fc7_weights", initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( name="fc7_offset", initializer=Uniform(-stdv, stdv))) self._fc8 = Linear( in_features=4096, out_features=class_num, weight_attr=ParamAttr( name="fc8_weights", initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( name="fc8_offset", initializer=Uniform(-stdv, stdv))) def forward(self, inputs): x = self._conv1(inputs) x = self._conv2(x) x = self._conv3(x) x = F.relu(x) x = self._conv4(x) x = F.relu(x) x = self._conv5(x) x = paddle.flatten(x, start_axis=1, stop_axis=-1) x = self._drop1(x) x = self._fc6(x) x = F.relu(x) x = self._drop2(x) x = self._fc7(x) x = F.relu(x) x = self._fc8(x) return x def _load_pretrained(pretrained, model, model_url, use_ssld=False): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def AlexNet(pretrained=False, use_ssld=False, **kwargs): model = AlexNetDY(**kwargs) _load_pretrained( pretrained, model, MODEL_URLS["AlexNet"], use_ssld=use_ssld) return model