# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.functional.activation import hard_sigmoid, hard_swish from paddle.nn import Conv2D, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from paddle.regularizer import L2Decay import math __all__ = [ "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5", "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0", "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35", "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75", "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25" ] def make_divisible(v, divisor=8, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class MobileNetV3(nn.Layer): def __init__(self, scale=1.0, model_name="small", dropout_prob=0.2, class_dim=1000): super(MobileNetV3, self).__init__() inplanes = 16 if model_name == "large": self.cfg = [ # k, exp, c, se, nl, s, [3, 16, 16, False, "relu", 1], [3, 64, 24, False, "relu", 2], [3, 72, 24, False, "relu", 1], [5, 72, 40, True, "relu", 2], [5, 120, 40, True, "relu", 1], [5, 120, 40, True, "relu", 1], [3, 240, 80, False, "hard_swish", 2], [3, 200, 80, False, "hard_swish", 1], [3, 184, 80, False, "hard_swish", 1], [3, 184, 80, False, "hard_swish", 1], [3, 480, 112, True, "hard_swish", 1], [3, 672, 112, True, "hard_swish", 1], [5, 672, 160, True, "hard_swish", 2], [5, 960, 160, True, "hard_swish", 1], [5, 960, 160, True, "hard_swish", 1], ] self.cls_ch_squeeze = 960 self.cls_ch_expand = 1280 elif model_name == "small": self.cfg = [ # k, exp, c, se, nl, s, [3, 16, 16, True, "relu", 2], [3, 72, 24, False, "relu", 2], [3, 88, 24, False, "relu", 1], [5, 96, 40, True, "hard_swish", 2], [5, 240, 40, True, "hard_swish", 1], [5, 240, 40, True, "hard_swish", 1], [5, 120, 48, True, "hard_swish", 1], [5, 144, 48, True, "hard_swish", 1], [5, 288, 96, True, "hard_swish", 2], [5, 576, 96, True, "hard_swish", 1], [5, 576, 96, True, "hard_swish", 1], ] self.cls_ch_squeeze = 576 self.cls_ch_expand = 1280 else: raise NotImplementedError( "mode[{}_model] is not implemented!".format(model_name)) self.conv1 = ConvBNLayer( in_c=3, out_c=make_divisible(inplanes * scale), filter_size=3, stride=2, padding=1, num_groups=1, if_act=True, act="hard_swish", name="conv1") self.block_list = [] i = 0 inplanes = make_divisible(inplanes * scale) for (k, exp, c, se, nl, s) in self.cfg: block = self.add_sublayer( "conv" + str(i + 2), ResidualUnit( in_c=inplanes, mid_c=make_divisible(scale * exp), out_c=make_divisible(scale * c), filter_size=k, stride=s, use_se=se, act=nl, name="conv" + str(i + 2))) self.block_list.append(block) inplanes = make_divisible(scale * c) i += 1 self.last_second_conv = ConvBNLayer( in_c=inplanes, out_c=make_divisible(scale * self.cls_ch_squeeze), filter_size=1, stride=1, padding=0, num_groups=1, if_act=True, act="hard_swish", name="conv_last") self.pool = AdaptiveAvgPool2D(1) self.last_conv = Conv2D( in_channels=make_divisible(scale * self.cls_ch_squeeze), out_channels=self.cls_ch_expand, kernel_size=1, stride=1, padding=0, weight_attr=ParamAttr(name="last_1x1_conv_weights"), bias_attr=False) self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer") self.out = Linear( self.cls_ch_expand, class_dim, weight_attr=ParamAttr("fc_weights"), bias_attr=ParamAttr(name="fc_offset")) def forward(self, inputs, label=None): x = self.conv1(inputs) for block in self.block_list: x = block(x) x = self.last_second_conv(x) x = self.pool(x) x = self.last_conv(x) x = hard_swish(x) x = self.dropout(x) x = paddle.reshape(x, shape=[x.shape[0], x.shape[1]]) x = self.out(x) return x class ConvBNLayer(nn.Layer): def __init__(self, in_c, out_c, filter_size, stride, padding, num_groups=1, if_act=True, act=None, use_cudnn=True, name=""): super(ConvBNLayer, self).__init__() self.if_act = if_act self.act = act self.conv = Conv2D( in_channels=in_c, out_channels=out_c, kernel_size=filter_size, stride=stride, padding=padding, groups=num_groups, weight_attr=ParamAttr(name=name + "_weights"), bias_attr=False) self.bn = BatchNorm( num_channels=out_c, act=None, param_attr=ParamAttr( name=name + "_bn_scale", regularizer=L2Decay(0.0)), bias_attr=ParamAttr( name=name + "_bn_offset", regularizer=L2Decay(0.0)), moving_mean_name=name + "_bn_mean", moving_variance_name=name + "_bn_variance") def forward(self, x): x = self.conv(x) x = self.bn(x) if self.if_act: if self.act == "relu": x = F.relu(x) elif self.act == "hard_swish": x = hard_swish(x) else: print("The activation function is selected incorrectly.") exit() return x class ResidualUnit(nn.Layer): def __init__(self, in_c, mid_c, out_c, filter_size, stride, use_se, act=None, name=''): super(ResidualUnit, self).__init__() self.if_shortcut = stride == 1 and in_c == out_c self.if_se = use_se self.expand_conv = ConvBNLayer( in_c=in_c, out_c=mid_c, filter_size=1, stride=1, padding=0, if_act=True, act=act, name=name + "_expand") self.bottleneck_conv = ConvBNLayer( in_c=mid_c, out_c=mid_c, filter_size=filter_size, stride=stride, padding=int((filter_size - 1) // 2), num_groups=mid_c, if_act=True, act=act, name=name + "_depthwise") if self.if_se: self.mid_se = SEModule(mid_c, name=name + "_se") self.linear_conv = ConvBNLayer( in_c=mid_c, out_c=out_c, filter_size=1, stride=1, padding=0, if_act=False, act=None, name=name + "_linear") def forward(self, inputs): x = self.expand_conv(inputs) x = self.bottleneck_conv(x) if self.if_se: x = self.mid_se(x) x = self.linear_conv(x) if self.if_shortcut: x = paddle.add(inputs, x) return x class SEModule(nn.Layer): def __init__(self, channel, reduction=4, name=""): super(SEModule, self).__init__() self.avg_pool = AdaptiveAvgPool2D(1) self.conv1 = Conv2D( in_channels=channel, out_channels=channel // reduction, kernel_size=1, stride=1, padding=0, weight_attr=ParamAttr(name=name + "_1_weights"), bias_attr=ParamAttr(name=name + "_1_offset")) self.conv2 = Conv2D( in_channels=channel // reduction, out_channels=channel, kernel_size=1, stride=1, padding=0, weight_attr=ParamAttr(name + "_2_weights"), bias_attr=ParamAttr(name=name + "_2_offset")) def forward(self, inputs): outputs = self.avg_pool(inputs) outputs = self.conv1(outputs) outputs = F.relu(outputs) outputs = self.conv2(outputs) outputs = hard_sigmoid(outputs) return paddle.multiply(x=inputs, y=outputs) def MobileNetV3_small_x0_35(**args): model = MobileNetV3(model_name="small", scale=0.35, **args) return model def MobileNetV3_small_x0_5(**args): model = MobileNetV3(model_name="small", scale=0.5, **args) return model def MobileNetV3_small_x0_75(**args): model = MobileNetV3(model_name="small", scale=0.75, **args) return model def MobileNetV3_small_x1_0(**args): model = MobileNetV3(model_name="small", scale=1.0, **args) return model def MobileNetV3_small_x1_25(**args): model = MobileNetV3(model_name="small", scale=1.25, **args) return model def MobileNetV3_large_x0_35(**args): model = MobileNetV3(model_name="large", scale=0.35, **args) return model def MobileNetV3_large_x0_5(**args): model = MobileNetV3(model_name="large", scale=0.5, **args) return model def MobileNetV3_large_x0_75(**args): model = MobileNetV3(model_name="large", scale=0.75, **args) return model def MobileNetV3_large_x1_0(**args): model = MobileNetV3(model_name="large", scale=1.0, **args) return model def MobileNetV3_large_x1_25(**args): model = MobileNetV3(model_name="large", scale=1.25, **args) return model