# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Code was heavily based on https://github.com/Visual-Attention-Network/VAN-Classification # reference: https://arxiv.org/abs/2202.09741 from functools import partial import math import paddle import paddle.nn as nn from paddle.nn.initializer import TruncatedNormal, Constant from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "VAN_tiny": "", # TODO } __all__ = list(MODEL_URLS.keys()) trunc_normal_ = TruncatedNormal(std=.02) zeros_ = Constant(value=0.) ones_ = Constant(value=1.) def drop_path(x, drop_prob=0., training=False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... """ if drop_prob == 0. or not training: return x keep_prob = paddle.to_tensor(1 - drop_prob) shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1) random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype) random_tensor = paddle.floor(random_tensor) # binarize output = x.divide(keep_prob) * random_tensor return output class DropPath(nn.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) @paddle.jit.not_to_static def swapdim(x, dim1, dim2): a = list(range(len(x.shape))) a[dim1], a[dim2] = a[dim2], a[dim1] return x.transpose(a) class Mlp(nn.Layer): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2D(in_features, hidden_features, 1) self.dwconv = DWConv(hidden_features) self.act = act_layer() self.fc2 = nn.Conv2D(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.dwconv(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class LKA(nn.Layer): def __init__(self, dim): super().__init__() self.conv0 = nn.Conv2D(dim, dim, 5, padding=2, groups=dim) self.conv_spatial = nn.Conv2D( dim, dim, 7, stride=1, padding=9, groups=dim, dilation=3) self.conv1 = nn.Conv2D(dim, dim, 1) def forward(self, x): attn = self.conv0(x) attn = self.conv_spatial(attn) attn = self.conv1(attn) return x * attn class Attention(nn.Layer): def __init__(self, d_model): super().__init__() self.proj_1 = nn.Conv2D(d_model, d_model, 1) self.activation = nn.GELU() self.spatial_gating_unit = LKA(d_model) self.proj_2 = nn.Conv2D(d_model, d_model, 1) def forward(self, x): shorcut = x x = self.proj_1(x) x = self.activation(x) x = self.spatial_gating_unit(x) x = self.proj_2(x) x = x + shorcut return x class Block(nn.Layer): def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU): super().__init__() self.norm1 = nn.BatchNorm2D(dim) self.attn = Attention(dim) self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() self.norm2 = nn.BatchNorm2D(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) layer_scale_init_value = 1e-2 self.layer_scale_1 = self.create_parameter( shape=[dim, 1, 1], default_initializer=Constant(value=layer_scale_init_value)) self.layer_scale_2 = self.create_parameter( shape=[dim, 1, 1], default_initializer=Constant(value=layer_scale_init_value)) def forward(self, x): x = x + self.drop_path(self.layer_scale_1 * self.attn(self.norm1(x))) x = x + self.drop_path(self.layer_scale_2 * self.mlp(self.norm2(x))) return x class OverlapPatchEmbed(nn.Layer): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768): super().__init__() self.proj = nn.Conv2D( in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=patch_size // 2) self.norm = nn.BatchNorm2D(embed_dim) def forward(self, x): x = self.proj(x) _, _, H, W = x.shape x = self.norm(x) return x, H, W class VAN(nn.Layer): r""" VAN A PaddlePaddle impl of : `Visual Attention Network` - https://arxiv.org/pdf/2202.09741.pdf """ def __init__(self, img_size=224, in_chans=3, class_num=1000, embed_dims=[64, 128, 256, 512], mlp_ratios=[4, 4, 4, 4], drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[3, 4, 6, 3], num_stages=4, flag=False): super().__init__() if flag == False: self.class_num = class_num self.depths = depths self.num_stages = num_stages dpr = [x for x in paddle.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule cur = 0 for i in range(num_stages): patch_embed = OverlapPatchEmbed( img_size=img_size if i == 0 else img_size // (2**(i + 1)), patch_size=7 if i == 0 else 3, stride=4 if i == 0 else 2, in_chans=in_chans if i == 0 else embed_dims[i - 1], embed_dim=embed_dims[i]) block = nn.LayerList([ Block( dim=embed_dims[i], mlp_ratio=mlp_ratios[i], drop=drop_rate, drop_path=dpr[cur + j]) for j in range(depths[i]) ]) norm = norm_layer(embed_dims[i]) cur += depths[i] setattr(self, f"patch_embed{i + 1}", patch_embed) setattr(self, f"block{i + 1}", block) setattr(self, f"norm{i + 1}", norm) # classification head self.head = nn.Linear(embed_dims[3], class_num) if class_num > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) elif isinstance(m, nn.Conv2D): fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels fan_out //= m._groups m.weight.set_value( paddle.normal( std=math.sqrt(2.0 / fan_out), shape=m.weight.shape)) if m.bias is not None: zeros_(m.bias) def forward_features(self, x): B = x.shape[0] for i in range(self.num_stages): patch_embed = getattr(self, f"patch_embed{i + 1}") block = getattr(self, f"block{i + 1}") norm = getattr(self, f"norm{i + 1}") x, H, W = patch_embed(x) for blk in block: x = blk(x) x = x.flatten(2) x = swapdim(x, 1, 2) x = norm(x) if i != self.num_stages - 1: x = x.reshape([B, H, W, x.shape[2]]).transpose([0, 3, 1, 2]) return x.mean(axis=1) def forward(self, x): x = self.forward_features(x) x = self.head(x) return x class DWConv(nn.Layer): def __init__(self, dim=768): super().__init__() self.dwconv = nn.Conv2D(dim, dim, 3, 1, 1, bias_attr=True, groups=dim) def forward(self, x): x = self.dwconv(x) return x def _load_pretrained(pretrained, model, model_url, use_ssld=False): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def VAN_tiny(pretrained=False, use_ssld=False, **kwargs): model = VAN(embed_dims=[32, 64, 160, 256], mlp_ratios=[8, 8, 4, 4], norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 3, 5, 2], **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["VAN_tiny"], use_ssld=use_ssld) return model