# 飞桨训推一体认证 ## 1. 简介 飞桨除了基本的模型训练和预测,还提供了支持多端多平台的高性能推理部署工具。本文档提供了PaddleClas中所有模型的飞桨训推一体认证 (Training and Inference Pipeline Certification(TIPC)) 信息和测试工具,方便用户查阅每种模型的训练推理部署打通情况,并可以进行一键测试。
## 2. 汇总信息 打通情况汇总如下,已填写的部分表示可以使用本工具进行一键测试,未填写的表示正在支持中。 **字段说明:** - 基础训练预测:包括模型训练、Paddle Inference Python预测。 - 更多训练方式:包括多机多卡、混合精度。 - 模型压缩:包括裁剪、离线/在线量化、蒸馏。 - 其他预测部署:包括Paddle Inference C++预测、Paddle Serving部署、Paddle-Lite部署等。 更详细的mkldnn、Tensorrt等预测加速相关功能的支持情况可以查看各测试工具的[更多教程](#more)。 | 算法论文 | 模型名称 | 模型类型 | 基础
训练预测 | 更多
训练方式 | 模型压缩 | 其他预测部署 | | :--- | :--- | :----: | :--------: | :---- | :---- | :---- | | ResNet |ResNet50_vd | 分类 | 支持 | 多机多卡
混合精度 | FPGM裁剪
PACT量化| | | MobileNetV3 |MobileNetV3_large_x1_0 | 分类 | 支持 | 多机多卡
混合精度 | FPGM裁剪
PACT量化| | | PPLCNet |PPLCNet_x2_5 | 分类 | 支持 | 多机多卡
混合精度 | FPGM裁剪
PACT量化| | ## 3. 一键测试工具使用 ### 目录介绍 ``` ./test_tipc/ ├── common_func.sh #test_*.sh会调用到的公共函数 ├── config # 配置文件目录 │ ├── MobileNetV3_large_x1_0 # MobileNetV3系列模型测试配置文件目录 │ │ ├── MobileNetV3_large_x1_0_train_infer_python.txt #基础训练预测配置文件 │ │ ├── MobileNetV3_large_x1_0_train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt #多机多卡训练预测配置文件 │ │ └── MobileNetV3_large_x1_0_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt #混合精度训练预测配置文件 │ └── ResNet # ResNet系列模型测试配置文件目录 │ ├── ResNet50_vd_train_infer_python.txt #基础训练预测配置文件 │ ├── ResNet50_vd_train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt #多机多卡训练预测配置文件 │ └── ResNet50_vd_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt #混合精度训练预测配置文件 | ...... ├── docs │ ├── guide.png │ └── test.png ├── prepare.sh # 完成test_*.sh运行所需要的数据和模型下载 ├── README.md # 使用文档 ├── results # 预先保存的预测结果,用于和实际预测结果进行精读比对 └── test_train_inference_python.sh # 测试python训练预测的主程序 ``` ### 测试流程 使用本工具,可以测试不同功能的支持情况,以及预测结果是否对齐,测试流程如下:
1. 运行`prepare.sh`准备测试所需数据和模型; 2. 运行要测试的功能对应的测试脚本`test_*.sh`,产出log,由log可以看到不同配置是否运行成功; 3. 用`compare_results.py`对比log中的预测结果和预存在results目录下的结果,判断预测精度是否符合预期(在误差范围内)。 其中,有4个测试主程序,功能如下: - `test_train_inference_python.sh`:测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。 - `test_inference_cpp.sh`:测试基于C++的模型推理。待支持 - `test_serving.sh`:测试基于Paddle Serving的服务化部署功能。待支持 - `test_lite.sh`:测试基于Paddle-Lite的端侧预测部署功能。待支持 #### 更多教程 各功能测试中涉及混合精度、裁剪、量化等训练相关,及mkldnn、Tensorrt等多种预测相关参数配置,请点击下方相应链接了解更多细节和使用教程: [test_train_inference_python 使用](docs/test_train_inference_python.md) [test_inference_cpp 使用](docs/test_inference_cpp.md) [test_serving 使用](docs/test_serving.md) [test_lite 使用](docs/test_lite.md)