# DeiT 系列 ----- ## 目录 - [1. 模型介绍](#1) - [1.1 模型简介](#1.1) - [1.2 模型指标](#1.2) - [1.3 Benchmark](#1.3) - [1.3.1 基于 V100 GPU 的预测速度](#1.3.1) - [2. 模型快速体验](#2) - [3. 模型训练、评估和预测](#3) - [4. 模型推理部署](#4) - [4.1 推理模型准备](#4.1) - [4.2 基于 Python 预测引擎推理](#4.2) - [4.3 基于 C++ 预测引擎推理](#4.3) - [4.4 服务化部署](#4.4) - [4.5 端侧部署](#4.5) - [4.6 Paddle2ONNX 模型转换与预测](#4.6) ## 1. 模型介绍 ### 1.1 模型简介 DeiT(Data-efficient Image Transformers)系列模型是由 FaceBook 在 2020 年底提出的,针对 ViT 模型需要大规模数据集训练的问题进行了改进,最终在 ImageNet 上取得了 83.1%的 Top1 精度。并且使用卷积模型作为教师模型,针对该模型进行知识蒸馏,在 ImageNet 数据集上可以达到 85.2% 的 Top1 精度。[论文地址](https://arxiv.org/abs/2012.12877)。 ### 1.2 模型指标 | Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPS
(G) | Params
(M) | |:--:|:--:|:--:|:--:|:--:|:--:|:--:| | DeiT_tiny_patch16_224 | 0.718 | 0.910 | 0.722 | 0.911 | 1.07 | 5.68 | | DeiT_small_patch16_224 | 0.796 | 0.949 | 0.799 | 0.950 | 4.24 | 21.97 | | DeiT_base_patch16_224 | 0.817 | 0.957 | 0.818 | 0.956 | 16.85 | 86.42 | | DeiT_base_patch16_384 | 0.830 | 0.962 | 0.829 | 0.972 | 49.35 | 86.42 | | DeiT_tiny_distilled_patch16_224 | 0.741 | 0.918 | 0.745 | 0.919 | 1.08 | 5.87 | | DeiT_small_distilled_patch16_224 | 0.809 | 0.953 | 0.812 | 0.954 | 4.26 | 22.36 | | DeiT_base_distilled_patch16_224 | 0.831 | 0.964 | 0.834 | 0.965 | 16.93 | 87.18 | | DeiT_base_distilled_patch16_384 | 0.851 | 0.973 | 0.852 | 0.972 | 49.43 | 87.18 | 关于 Params、FLOPs、Inference speed 等信息,敬请期待。 ### 1.3 Benchmark #### 1.3.1 基于 V100 GPU 的预测速度 | Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | | ------------------------------------ | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ | | DeiT_tiny_
patch16_224 | 256 | 224 | 3.61 | 3.94 | 6.10 | | DeiT_small_
patch16_224 | 256 | 224 | 3.61 | 6.24 | 10.49 | | DeiT_base_
patch16_224 | 256 | 224 | 6.13 | 14.87 | 28.50 | | DeiT_base_
patch16_384 | 384 | 384 | 14.12 | 48.80 | 97.60 | | DeiT_tiny_
distilled_patch16_224 | 256 | 224 | 3.51 | 4.05 | 6.03 | | DeiT_small_
distilled_patch16_224 | 256 | 224 | 3.70 | 6.20 | 10.53 | | DeiT_base_
distilled_patch16_224 | 256 | 224 | 6.17 | 14.94 | 28.58 | | DeiT_base_
distilled_patch16_384 | 384 | 384 | 14.12 | 48.76 | 97.09 | ## 2. 模型快速体验 安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)。 ## 3. 模型训练、评估和预测 此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/DeiT/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。 **备注:** 由于 DeiT 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。 ## 4. 模型推理部署 ### 4.1 推理模型准备 Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。 Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备) 。 ### 4.2 基于 Python 预测引擎推理 PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 。 ### 4.3 基于 C++ 预测引擎推理 PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。 ### 4.4 服务化部署 Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。 PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。 ### 4.5 端侧部署 Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。 PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。 ### 4.6 Paddle2ONNX 模型转换与预测 Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。 PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。