#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.fluid as fluid import contextlib bn_regularizer = fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0) name_scope = "" @contextlib.contextmanager def scope(name): global name_scope bk = name_scope name_scope = name_scope + name + '/' yield name_scope = bk def max_pool(input, kernel, stride, padding): data = fluid.layers.pool2d( input, pool_size=kernel, pool_type='max', pool_stride=stride, pool_padding=padding) return data def group_norm(input, G, eps=1e-5, param_attr=None, bias_attr=None): N, C, H, W = input.shape if C % G != 0: # print "group can not divide channle:", C, G for d in range(10): for t in [d, -d]: if G + t <= 0: continue if C % (G + t) == 0: G = G + t break if C % G == 0: # print "use group size:", G break assert C % G == 0 x = fluid.layers.group_norm( input, groups=G, param_attr=param_attr, bias_attr=bias_attr, name=name_scope + 'group_norm') return x def bn(*args, **kargs): with scope('BatchNorm'): return fluid.layers.batch_norm( *args, epsilon=1e-3, momentum=0.99, param_attr=fluid.ParamAttr( name=name_scope + 'gamma', regularizer=bn_regularizer), bias_attr=fluid.ParamAttr( name=name_scope + 'beta', regularizer=bn_regularizer), moving_mean_name=name_scope + 'moving_mean', moving_variance_name=name_scope + 'moving_variance', **kargs) def bn_relu(data): return fluid.layers.relu(bn(data)) def relu(data): return fluid.layers.relu(data) def conv(*args, **kargs): kargs['param_attr'] = name_scope + 'weights' if 'bias_attr' in kargs and kargs['bias_attr']: kargs['bias_attr'] = fluid.ParamAttr( name=name_scope + 'biases', regularizer=None, initializer=fluid.initializer.ConstantInitializer(value=0.0)) else: kargs['bias_attr'] = False return fluid.layers.conv2d(*args, **kargs) def deconv(*args, **kargs): kargs['param_attr'] = name_scope + 'weights' if 'bias_attr' in kargs and kargs['bias_attr']: kargs['bias_attr'] = name_scope + 'biases' else: kargs['bias_attr'] = False return fluid.layers.conv2d_transpose(*args, **kargs) def seperate_conv(input, channel, stride, filter, dilation=1, act=None): param_attr = fluid.ParamAttr( name=name_scope + 'weights', regularizer=fluid.regularizer.L2DecayRegularizer( regularization_coeff=0.0), initializer=fluid.initializer.TruncatedNormal( loc=0.0, scale=0.33)) with scope('depthwise'): input = conv( input, input.shape[1], filter, stride, groups=input.shape[1], padding=(filter // 2) * dilation, dilation=dilation, use_cudnn=False, param_attr=param_attr) input = bn(input) if act: input = act(input) param_attr = fluid.ParamAttr( name=name_scope + 'weights', regularizer=None, initializer=fluid.initializer.TruncatedNormal( loc=0.0, scale=0.06)) with scope('pointwise'): input = conv( input, channel, 1, 1, groups=1, padding=0, param_attr=param_attr) input = bn(input) if act: input = act(input) return input