mode: 'train' ARCHITECTURE: name: "EfficientNetLite0" params: is_test: False padding_type : "SAME" override_params: drop_connect_rate: 0.1 fix_head_stem: True relu_fn: True pretrained_model: "" model_save_dir: "./output/" classes_num: 1000 total_images: 1281167 save_interval: 1 validate: True valid_interval: 1 epochs: 360 topk: 5 image_shape: [3, 224, 224] use_ema: True ema_decay: 0.9999 use_aa: True ls_epsilon: 0.1 LEARNING_RATE: function: 'ExponentialWarmup' params: lr: 0.032 OPTIMIZER: function: 'RMSProp' params: momentum: 0.9 rho: 0.9 epsilon: 0.001 regularizer: function: 'L2' factor: 0.00001 TRAIN: batch_size: 512 num_workers: 4 file_list: "./dataset/ILSVRC2012/train_list.txt" data_dir: "./dataset/ILSVRC2012/" shuffle_seed: 0 transforms: - DecodeImage: to_rgb: True to_np: False channel_first: False - RandCropImage: size: 224 interpolation: 2 - RandFlipImage: flip_code: 1 - AutoAugment: - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: VALID: batch_size: 128 num_workers: 4 file_list: "./dataset/ILSVRC2012/val_list.txt" data_dir: "./dataset/ILSVRC2012/" shuffle_seed: 0 transforms: - DecodeImage: to_rgb: True to_np: False channel_first: False - ResizeImage: interpolation: 2 resize_short: 256 - CropImage: size: 224 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: