# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import datetime from ppcls.utils import logger from ppcls.utils.misc import AverageMeter def update_metric(trainer, out, batch, batch_size): # calc metric if trainer.train_metric_func is not None: metric_dict = trainer.train_metric_func(out, batch[-1]) for key in metric_dict: if key not in trainer.output_info: trainer.output_info[key] = AverageMeter(key, '7.5f') trainer.output_info[key].update(metric_dict[key].numpy()[0], batch_size) def update_loss(trainer, loss_dict, batch_size): # update_output_info for key in loss_dict: if key not in trainer.output_info: trainer.output_info[key] = AverageMeter(key, '7.5f') trainer.output_info[key].update(loss_dict[key].numpy()[0], batch_size) def log_info(trainer, batch_size, epoch_id, iter_id): lr_msg = "lr: {:.5f}".format(trainer.lr_sch.get_lr()) metric_msg = ", ".join([ "{}: {:.5f}".format(key, trainer.output_info[key].avg) for key in trainer.output_info ]) time_msg = "s, ".join([ "{}: {:.5f}".format(key, trainer.time_info[key].avg) for key in trainer.time_info ]) ips_msg = "ips: {:.5f} images/sec".format( batch_size / trainer.time_info["batch_cost"].avg) eta_sec = ((trainer.config["Global"]["epochs"] - epoch_id + 1 ) * len(trainer.train_dataloader) - iter_id ) * trainer.time_info["batch_cost"].avg eta_msg = "eta: {:s}".format(str(datetime.timedelta(seconds=int(eta_sec)))) logger.info("[Train][Epoch {}/{}][Iter: {}/{}]{}, {}, {}, {}, {}".format( epoch_id, trainer.config["Global"]["epochs"], iter_id, len(trainer.train_dataloader), lr_msg, metric_msg, time_msg, ips_msg, eta_msg)) logger.scaler( name="lr", value=trainer.lr_sch.get_lr(), step=trainer.global_step, writer=trainer.vdl_writer) for key in trainer.output_info: logger.scaler( name="train_{}".format(key), value=trainer.output_info[key].avg, step=trainer.global_step, writer=trainer.vdl_writer)