# HRNet 系列 ----- ## 目录 * [1. 概述](#1) * [2. 精度、FLOPS 和参数量](#2) * [3. 基于 V100 GPU 的预测速度](#3) * [4. 基于 T4 GPU 的预测速度](#4) ## 1. 概述 HRNet 是 2019 年由微软亚洲研究院提出的一种全新的神经网络,不同于以往的卷积神经网络,该网络在网络深层仍然可以保持高分辨率,因此预测的关键点热图更准确,在空间上也更精确。此外,该网络在对分辨率敏感的其他视觉任务中,如检测、分割等,表现尤为优异。 该系列模型的 FLOPS、参数量以及 T4 GPU 上的预测耗时如下图所示。 ![](../../images/models/T4_benchmark/t4.fp32.bs4.HRNet.flops.png) ![](../../images/models/T4_benchmark/t4.fp32.bs4.HRNet.params.png) ![](../../images/models/T4_benchmark/t4.fp32.bs4.HRNet.png) ![](../../images/models/T4_benchmark/t4.fp16.bs4.HRNet.png) 目前 PaddleClas 开源的这类模型的预训练模型一共有 7 个,其指标如图所示,其中 HRNet_W48_C 指标精度异常的原因可能是因为网络训练的正常波动。 ## 2. 精度、FLOPS 和参数量 | Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPS
(G) | Parameters
(M) | |:--:|:--:|:--:|:--:|:--:|:--:|:--:| | HRNet_W18_C | 0.769 | 0.934 | 0.768 | 0.934 | 4.140 | 21.290 | | HRNet_W18_C_ssld | 0.816 | 0.958 | 0.768 | 0.934 | 4.140 | 21.290 | | HRNet_W30_C | 0.780 | 0.940 | 0.782 | 0.942 | 16.230 | 37.710 | | HRNet_W32_C | 0.783 | 0.942 | 0.785 | 0.942 | 17.860 | 41.230 | | HRNet_W40_C | 0.788 | 0.945 | 0.789 | 0.945 | 25.410 | 57.550 | | HRNet_W44_C | 0.790 | 0.945 | 0.789 | 0.944 | 29.790 | 67.060 | | HRNet_W48_C | 0.790 | 0.944 | 0.793 | 0.945 | 34.580 | 77.470 | | HRNet_W48_C_ssld | 0.836 | 0.968 | 0.793 | 0.945 | 34.580 | 77.470 | | HRNet_W64_C | 0.793 | 0.946 | 0.795 | 0.946 | 57.830 | 128.060 | | SE_HRNet_W64_C_ssld | 0.847 | 0.973 | | | 57.830 | 128.970 | ## 3. 基于 V100 GPU 的预测速度 | Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | |-------------|-----------|-------------------|-------------------|-------------------|-------------------| | HRNet_W18_C | 224 | 256 | 6.66 | 8.94 | 11.95 | | HRNet_W18_C_ssld | 224 | 256 | 6.66 | 8.92 | 11.93 | | HRNet_W30_C | 224 | 256 | 8.61 | 11.40 | 15.23 | | HRNet_W32_C | 224 | 256 | 8.54 | 11.58 | 15.57 | | HRNet_W40_C | 224 | 256 | 9.83 | 15.02 | 20.92 | | HRNet_W44_C | 224 | 256 | 10.62 | 16.18 | 25.92 | | HRNet_W48_C | 224 | 256 | 11.07 | 17.06 | 27.28 | | HRNet_W48_C_ssld | 224 | 256 | 11.09 | 17.04 | 27.28 | | HRNet_W64_C | 224 | 256 | 13.82 | 21.15 | 35.51 | ## 4. 基于 T4 GPU 的预测速度 | Models | Crop Size | Resize Short Size | FP16
Batch Size=1
(ms) | FP16
Batch Size=4
(ms) | FP16
Batch Size=8
(ms) | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | |-------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | HRNet_W18_C | 224 | 256 | 6.79093 | 11.50986 | 17.67244 | 7.40636 | 13.29752 | 23.33445 | | HRNet_W18_C_ssld | 224 | 256 | 6.79093 | 11.50986 | 17.67244 | 7.40636 | 13.29752 | 23.33445 | | HRNet_W30_C | 224 | 256 | 8.98077 | 14.08082 | 21.23527 | 9.57594 | 17.35485 | 32.6933 | | HRNet_W32_C | 224 | 256 | 8.82415 | 14.21462 | 21.19804 | 9.49807 | 17.72921 | 32.96305 | | HRNet_W40_C | 224 | 256 | 11.4229 | 19.1595 | 30.47984 | 12.12202 | 25.68184 | 48.90623 | | HRNet_W44_C | 224 | 256 | 12.25778 | 22.75456 | 32.61275 | 13.19858 | 32.25202 | 59.09871 | | HRNet_W48_C | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 | | HRNet_W48_C_ssld | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 | | HRNet_W64_C | 224 | 256 | 15.10428 | 27.68901 | 40.4198 | 17.57527 | 47.9533 | 97.11228 | | SE_HRNet_W64_C_ssld | 224 | 256 | 32.33651 | 69.31189 | 116.07245 | 31.69770 | 94.99546 | 174.45766 |