# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.abspath(os.path.join(__dir__, '../'))) import copy import cv2 import numpy as np from python.predict_rec import RecPredictor from python.predict_det import DetPredictor from vector_search import Graph_Index from utils import logger from utils import config from utils.get_image_list import get_image_list from utils.draw_bbox import draw_bbox_results class SystemPredictor(object): def __init__(self, config): self.config = config self.rec_predictor = RecPredictor(config) self.det_predictor = DetPredictor(config) assert 'IndexProcess' in config.keys(), "Index config not found ... " self.return_k = self.config['IndexProcess']['return_k'] self.search_budget = self.config['IndexProcess']['search_budget'] self.Searcher = Graph_Index( dist_type=config['IndexProcess']['dist_type']) self.Searcher.load(config['IndexProcess']['index_path']) def append_self(self, results, shape): results.append({ "class_id": 0, "score": 1.0, "bbox": np.array([0, 0, shape[1], shape[0]]), "label_name": "foreground", }) return results def predict(self, img): output = [] results = self.det_predictor.predict(img) # add the whole image for recognition results = self.append_self(results, img.shape) for result in results: preds = {} xmin, ymin, xmax, ymax = result["bbox"].astype("int") crop_img = img[ymin:ymax, xmin:xmax, :].copy() rec_results = self.rec_predictor.predict(crop_img) preds["bbox"] = [xmin, ymin, xmax, ymax] scores, docs = self.Searcher.search( query=rec_results, return_k=self.return_k, search_budget=self.search_budget) # just top-1 result will be returned for the final if scores[0] >= self.config["IndexProcess"]["score_thres"]: preds["rec_docs"] = docs[0] preds["rec_scores"] = scores[0] else: preds["rec_docs"] = None preds["rec_scores"] = 0.0 output.append(preds) return output def main(config): system_predictor = SystemPredictor(config) image_list = get_image_list(config["Global"]["infer_imgs"]) assert config["Global"]["batch_size"] == 1 for idx, image_file in enumerate(image_list): img = cv2.imread(image_file)[:, :, ::-1] output = system_predictor.predict(img) draw_bbox_results(img, output, image_file) print(output) return if __name__ == "__main__": args = config.parse_args() config = config.get_config(args.config, overrides=args.override, show=True) main(config)