# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Code was based on https://github.com/facebookresearch/pycls from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import Conv2D, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from paddle.nn.initializer import Uniform import math from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "RegNetX_200MF": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_200MF_pretrained.pdparams", "RegNetX_4GF": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams", "RegNetX_32GF": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_32GF_pretrained.pdparams", "RegNetY_200MF": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_200MF_pretrained.pdparams", "RegNetY_4GF": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_4GF_pretrained.pdparams", "RegNetY_32GF": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_32GF_pretrained.pdparams", } __all__ = list(MODEL_URLS.keys()) def quantize_float(f, q): """Converts a float to closest non-zero int divisible by q.""" return int(round(f / q) * q) def adjust_ws_gs_comp(ws, bms, gs): """Adjusts the compatibility of widths and groups.""" ws_bot = [int(w * b) for w, b in zip(ws, bms)] gs = [min(g, w_bot) for g, w_bot in zip(gs, ws_bot)] ws_bot = [quantize_float(w_bot, g) for w_bot, g in zip(ws_bot, gs)] ws = [int(w_bot / b) for w_bot, b in zip(ws_bot, bms)] return ws, gs def get_stages_from_blocks(ws, rs): """Gets ws/ds of network at each stage from per block values.""" ts = [ w != wp or r != rp for w, wp, r, rp in zip(ws + [0], [0] + ws, rs + [0], [0] + rs) ] s_ws = [w for w, t in zip(ws, ts[:-1]) if t] s_ds = np.diff([d for d, t in zip(range(len(ts)), ts) if t]).tolist() return s_ws, s_ds def generate_regnet(w_a, w_0, w_m, d, q=8): """Generates per block ws from RegNet parameters.""" assert w_a >= 0 and w_0 > 0 and w_m > 1 and w_0 % q == 0 ws_cont = np.arange(d) * w_a + w_0 ks = np.round(np.log(ws_cont / w_0) / np.log(w_m)) ws = w_0 * np.power(w_m, ks) ws = np.round(np.divide(ws, q)) * q num_stages, max_stage = len(np.unique(ws)), ks.max() + 1 ws, ws_cont = ws.astype(int).tolist(), ws_cont.tolist() return ws, num_stages, max_stage, ws_cont class ConvBNLayer(nn.Layer): def __init__(self, num_channels, num_filters, filter_size, stride=1, groups=1, padding=0, act=None, name=None): super(ConvBNLayer, self).__init__() self._conv = Conv2D( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=padding, groups=groups, weight_attr=ParamAttr(name=name + ".conv2d.output.1.w_0"), bias_attr=ParamAttr(name=name + ".conv2d.output.1.b_0")) bn_name = name + "_bn" self._batch_norm = BatchNorm( num_filters, act=act, param_attr=ParamAttr(name=bn_name + ".output.1.w_0"), bias_attr=ParamAttr(bn_name + ".output.1.b_0"), moving_mean_name=bn_name + "_mean", moving_variance_name=bn_name + "_variance") def forward(self, inputs): y = self._conv(inputs) y = self._batch_norm(y) return y class BottleneckBlock(nn.Layer): def __init__(self, num_channels, num_filters, stride, bm, gw, se_on, se_r, shortcut=True, name=None): super(BottleneckBlock, self).__init__() # Compute the bottleneck width w_b = int(round(num_filters * bm)) # Compute the number of groups num_gs = w_b // gw self.se_on = se_on self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=w_b, filter_size=1, padding=0, act="relu", name=name + "_branch2a") self.conv1 = ConvBNLayer( num_channels=w_b, num_filters=w_b, filter_size=3, stride=stride, padding=1, groups=num_gs, act="relu", name=name + "_branch2b") if se_on: w_se = int(round(num_channels * se_r)) self.se_block = SELayer( num_channels=w_b, num_filters=w_b, reduction_ratio=w_se, name=name + "_branch2se") self.conv2 = ConvBNLayer( num_channels=w_b, num_filters=num_filters, filter_size=1, act=None, name=name + "_branch2c") if not shortcut: self.short = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, stride=stride, name=name + "_branch1") self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) if self.se_on: conv1 = self.se_block(conv1) conv2 = self.conv2(conv1) if self.shortcut: short = inputs else: short = self.short(inputs) y = paddle.add(x=short, y=conv2) y = F.relu(y) return y class SELayer(nn.Layer): def __init__(self, num_channels, num_filters, reduction_ratio, name=None): super(SELayer, self).__init__() self.pool2d_gap = AdaptiveAvgPool2D(1) self._num_channels = num_channels med_ch = int(num_channels / reduction_ratio) stdv = 1.0 / math.sqrt(num_channels * 1.0) self.squeeze = Linear( num_channels, med_ch, weight_attr=ParamAttr( initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"), bias_attr=ParamAttr(name=name + "_sqz_offset")) stdv = 1.0 / math.sqrt(med_ch * 1.0) self.excitation = Linear( med_ch, num_filters, weight_attr=ParamAttr( initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"), bias_attr=ParamAttr(name=name + "_exc_offset")) def forward(self, input): pool = self.pool2d_gap(input) pool = paddle.reshape(pool, shape=[-1, self._num_channels]) squeeze = self.squeeze(pool) squeeze = F.relu(squeeze) excitation = self.excitation(squeeze) excitation = F.sigmoid(excitation) excitation = paddle.reshape( excitation, shape=[-1, self._num_channels, 1, 1]) out = input * excitation return out class RegNet(nn.Layer): def __init__(self, w_a, w_0, w_m, d, group_w, bot_mul, q=8, se_on=False, class_num=1000): super(RegNet, self).__init__() # Generate RegNet ws per block b_ws, num_s, max_s, ws_cont = generate_regnet(w_a, w_0, w_m, d, q) # Convert to per stage format ws, ds = get_stages_from_blocks(b_ws, b_ws) # Generate group widths and bot muls gws = [group_w for _ in range(num_s)] bms = [bot_mul for _ in range(num_s)] # Adjust the compatibility of ws and gws ws, gws = adjust_ws_gs_comp(ws, bms, gws) # Use the same stride for each stage ss = [2 for _ in range(num_s)] # Use SE for RegNetY se_r = 0.25 # Construct the model # Group params by stage stage_params = list(zip(ds, ws, ss, bms, gws)) # Construct the stem stem_type = "simple_stem_in" stem_w = 32 block_type = "res_bottleneck_block" self.conv = ConvBNLayer( num_channels=3, num_filters=stem_w, filter_size=3, stride=2, padding=1, act="relu", name="stem_conv") self.block_list = [] for block, (d, w_out, stride, bm, gw) in enumerate(stage_params): shortcut = False for i in range(d): num_channels = stem_w if block == i == 0 else in_channels # Stride apply to the first block of the stage b_stride = stride if i == 0 else 1 conv_name = "s" + str(block + 1) + "_b" + str(i + 1) # chr(97 + i) bottleneck_block = self.add_sublayer( conv_name, BottleneckBlock( num_channels=num_channels, num_filters=w_out, stride=b_stride, bm=bm, gw=gw, se_on=se_on, se_r=se_r, shortcut=shortcut, name=conv_name)) in_channels = w_out self.block_list.append(bottleneck_block) shortcut = True self.pool2d_avg = AdaptiveAvgPool2D(1) self.pool2d_avg_channels = w_out stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0) self.out = Linear( self.pool2d_avg_channels, class_num, weight_attr=ParamAttr( initializer=Uniform(-stdv, stdv), name="fc_0.w_0"), bias_attr=ParamAttr(name="fc_0.b_0")) def forward(self, inputs): y = self.conv(inputs) for block in self.block_list: y = block(y) y = self.pool2d_avg(y) y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels]) y = self.out(y) return y def _load_pretrained(pretrained, model, model_url, use_ssld=False): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def RegNetX_200MF(pretrained=False, use_ssld=False, **kwargs): model = RegNet( w_a=36.44, w_0=24, w_m=2.49, d=13, group_w=8, bot_mul=1.0, q=8, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["RegNetX_200MF"], use_ssld=use_ssld) return model def RegNetX_4GF(pretrained=False, use_ssld=False, **kwargs): model = RegNet( w_a=38.65, w_0=96, w_m=2.43, d=23, group_w=40, bot_mul=1.0, q=8, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["RegNetX_4GF"], use_ssld=use_ssld) return model def RegNetX_32GF(pretrained=False, use_ssld=False, **kwargs): model = RegNet( w_a=69.86, w_0=320, w_m=2.0, d=23, group_w=168, bot_mul=1.0, q=8, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld) return model def RegNetY_200MF(pretrained=False, use_ssld=False, **kwargs): model = RegNet( w_a=36.44, w_0=24, w_m=2.49, d=13, group_w=8, bot_mul=1.0, q=8, se_on=True, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld) return model def RegNetY_4GF(pretrained=False, use_ssld=False, **kwargs): model = RegNet( w_a=31.41, w_0=96, w_m=2.24, d=22, group_w=64, bot_mul=1.0, q=8, se_on=True, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld) return model def RegNetY_32GF(pretrained=False, use_ssld=False, **kwargs): model = RegNet( w_a=115.89, w_0=232, w_m=2.53, d=20, group_w=232, bot_mul=1.0, q=8, se_on=True, **kwargs) _load_pretrained( pretrained, model, MODEL_URLS["RegNetX_32GF"], use_ssld=use_ssld) return model