# global configs Global: checkpoints: null pretrained_model: null output_dir: ./output device: gpu save_interval: 1 eval_during_train: True eval_interval: 1 eval_mode: "retrieval" epochs: 128 print_batch_step: 10 use_visualdl: False # used for static mode and model export image_shape: [3, 224, 224] save_inference_dir: ./inference #feature postprocess feature_normalize: False feature_binarize: "round" # model architecture Arch: name: "RecModel" Backbone: name: "VGG19Sigmoid" pretrained: True class_num: 48 Head: name: "FC" class_num: 10 embedding_size: 48 infer_output_key: "features" infer_add_softmax: "false" # loss function config for train/eval process Loss: Train: - CELoss: weight: 1.0 epsilon: 0.1 Eval: - CELoss: weight: 1.0 Optimizer: name: Momentum momentum: 0.9 lr: name: Piecewise learning_rate: 0.01 decay_epochs: [200] values: [0.01, 0.001] # data loader for train and eval DataLoader: Train: dataset: name: ImageNetDataset image_root: ./dataset/cifar10/ cls_label_path: ./dataset/cifar10/cifar10-2/train.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: size: 256 - RandCropImage: size: 224 - RandFlipImage: flip_code: 1 - NormalizeImage: scale: 1.0/255.0 mean: [0.4914, 0.4822, 0.4465] std: [0.2023, 0.1994, 0.2010] order: '' sampler: name: DistributedBatchSampler batch_size: 128 drop_last: False shuffle: True loader: num_workers: 4 use_shared_memory: True Eval: Query: dataset: name: ImageNetDataset image_root: ./dataset/cifar10/ cls_label_path: ./dataset/cifar10/cifar10-2/test.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: size: 224 - NormalizeImage: scale: 1.0/255.0 mean: [0.4914, 0.4822, 0.4465] std: [0.2023, 0.1994, 0.2010] order: '' sampler: name: DistributedBatchSampler batch_size: 512 drop_last: False shuffle: False loader: num_workers: 4 use_shared_memory: True Gallery: dataset: name: ImageNetDataset image_root: ./dataset/cifar10/ cls_label_path: ./dataset/cifar10/cifar10-2/database.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: size: 224 - NormalizeImage: scale: 1.0/255.0 mean: [0.4914, 0.4822, 0.4465] std: [0.2023, 0.1994, 0.2010] order: '' sampler: name: DistributedBatchSampler batch_size: 512 drop_last: False shuffle: False loader: num_workers: 4 use_shared_memory: True Metric: Train: - TopkAcc: topk: [1, 5] Eval: - mAP: - Precisionk: topk: [1, 5]