# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import math import paddle.nn as nn class CosMargin(paddle.nn.Layer): def __init__(self, embedding_size, class_num, margin=0.35, scale=64.0): super(CosMargin, self).__init__() self.scale = scale self.margin = margin self.embedding_size = embedding_size self.class_num = class_num weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.XavierNormal()) self.fc = nn.Linear( self.embedding_size, self.class_num, weight_attr=weight_attr, bias_attr=False) def forward(self, input, label): label.stop_gradient = True input_norm = paddle.sqrt( paddle.sum(paddle.square(input), axis=1, keepdim=True)) input = paddle.divide(input, input_norm) weight = self.fc.weight weight_norm = paddle.sqrt( paddle.sum(paddle.square(weight), axis=0, keepdim=True)) weight = paddle.divide(weight, weight_norm) cos = paddle.matmul(input, weight) if not self.training or label is None: return cos cos_m = cos - self.margin one_hot = paddle.nn.functional.one_hot(label, self.class_num) one_hot = paddle.squeeze(one_hot, axis=[1]) output = paddle.multiply(one_hot, cos_m) + paddle.multiply( (1.0 - one_hot), cos) output = output * self.scale return output