# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import os import numpy as np from nvidia.dali.pipeline import Pipeline import nvidia.dali.ops as ops import nvidia.dali.types as types from nvidia.dali.plugin.paddle import DALIGenericIterator import paddle from paddle import fluid class HybridTrainPipe(Pipeline): def __init__(self, file_root, file_list, batch_size, resize_shorter, crop, min_area, lower, upper, interp, mean, std, device_id, shard_id=0, num_shards=1, random_shuffle=True, num_threads=4, seed=42, pad_output=False, output_dtype=types.FLOAT): super(HybridTrainPipe, self).__init__( batch_size, num_threads, device_id, seed=seed) self.input = ops.FileReader( file_root=file_root, file_list=file_list, shard_id=shard_id, num_shards=num_shards, random_shuffle=random_shuffle) # set internal nvJPEG buffers size to handle full-sized ImageNet images # without additional reallocations device_memory_padding = 211025920 host_memory_padding = 140544512 self.decode = ops.ImageDecoderRandomCrop( device='mixed', output_type=types.RGB, device_memory_padding=device_memory_padding, host_memory_padding=host_memory_padding, random_aspect_ratio=[lower, upper], random_area=[min_area, 1.0], num_attempts=100) self.res = ops.Resize( device='gpu', resize_x=crop, resize_y=crop, interp_type=interp) self.cmnp = ops.CropMirrorNormalize( device="gpu", output_dtype=output_dtype, output_layout=types.NCHW, crop=(crop, crop), image_type=types.RGB, mean=mean, std=std, pad_output=pad_output) self.coin = ops.CoinFlip(probability=0.5) self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu") def define_graph(self): rng = self.coin() jpegs, labels = self.input(name="Reader") images = self.decode(jpegs) images = self.res(images) output = self.cmnp(images.gpu(), mirror=rng) return [output, self.to_int64(labels.gpu())] def __len__(self): return self.epoch_size("Reader") class HybridValPipe(Pipeline): def __init__(self, file_root, file_list, batch_size, resize_shorter, crop, interp, mean, std, device_id, shard_id=0, num_shards=1, random_shuffle=False, num_threads=4, seed=42, pad_output=False, output_dtype=types.FLOAT): super(HybridValPipe, self).__init__( batch_size, num_threads, device_id, seed=seed) self.input = ops.FileReader( file_root=file_root, file_list=file_list, shard_id=shard_id, num_shards=num_shards, random_shuffle=random_shuffle) self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB) self.res = ops.Resize( device="gpu", resize_shorter=resize_shorter, interp_type=interp) self.cmnp = ops.CropMirrorNormalize( device="gpu", output_dtype=output_dtype, output_layout=types.NCHW, crop=(crop, crop), image_type=types.RGB, mean=mean, std=std, pad_output=pad_output) self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu") def define_graph(self): jpegs, labels = self.input(name="Reader") images = self.decode(jpegs) images = self.res(images) output = self.cmnp(images) return [output, self.to_int64(labels.gpu())] def __len__(self): return self.epoch_size("Reader") def build(config, mode='train'): env = os.environ assert config.get('use_gpu', True) == True, "gpu training is required for DALI" assert not config.get( 'use_aa'), "auto augment is not supported by DALI reader" assert float(env.get('FLAGS_fraction_of_gpu_memory_to_use', 0.92)) < 0.9, \ "Please leave enough GPU memory for DALI workspace, e.g., by setting" \ " `export FLAGS_fraction_of_gpu_memory_to_use=0.8`" dataset_config = config[mode.upper()] gpu_num = paddle.fluid.core.get_cuda_device_count() if ( 'PADDLE_TRAINERS_NUM') and ( 'PADDLE_TRAINER_ID' ) not in env else int(env.get('PADDLE_TRAINERS_NUM', 0)) batch_size = dataset_config.batch_size assert batch_size % gpu_num == 0, \ "batch size must be multiple of number of devices" batch_size = batch_size // gpu_num file_root = dataset_config.data_dir file_list = dataset_config.file_list interp = 1 # settings.interpolation or 1 # default to linear interp_map = { 0: types.INTERP_NN, # cv2.INTER_NEAREST 1: types.INTERP_LINEAR, # cv2.INTER_LINEAR 2: types.INTERP_CUBIC, # cv2.INTER_CUBIC 4: types.INTERP_LANCZOS3, # XXX use LANCZOS3 for cv2.INTER_LANCZOS4 } output_dtype = (types.FLOAT16 if 'AMP' in config and config.AMP.get("use_pure_fp16", False) else types.FLOAT) assert interp in interp_map, "interpolation method not supported by DALI" interp = interp_map[interp] pad_output = False image_shape = config.get("image_shape", None) if image_shape and image_shape[0] == 4: pad_output = True transforms = { k: v for d in dataset_config["transforms"] for k, v in d.items() } scale = transforms["NormalizeImage"].get("scale", 1.0 / 255) if isinstance(scale, str): scale = eval(scale) mean = transforms["NormalizeImage"].get("mean", [0.485, 0.456, 0.406]) std = transforms["NormalizeImage"].get("std", [0.229, 0.224, 0.225]) mean = [v / scale for v in mean] std = [v / scale for v in std] if mode == "train": resize_shorter = 256 crop = transforms["RandCropImage"]["size"] scale = transforms["RandCropImage"].get("scale", [0.08, 1.]) ratio = transforms["RandCropImage"].get("ratio", [3.0 / 4, 4.0 / 3]) min_area = scale[0] lower = ratio[0] upper = ratio[1] if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env: shard_id = int(env['PADDLE_TRAINER_ID']) num_shards = int(env['PADDLE_TRAINERS_NUM']) device_id = int(env['FLAGS_selected_gpus']) pipe = HybridTrainPipe( file_root, file_list, batch_size, resize_shorter, crop, min_area, lower, upper, interp, mean, std, device_id, shard_id, num_shards, seed=42 + shard_id, pad_output=pad_output, output_dtype=output_dtype) pipe.build() pipelines = [pipe] sample_per_shard = len(pipe) // num_shards else: pipelines = [] places = fluid.framework.cuda_places() num_shards = len(places) for idx, p in enumerate(places): place = fluid.core.Place() place.set_place(p) device_id = place.gpu_device_id() pipe = HybridTrainPipe( file_root, file_list, batch_size, resize_shorter, crop, min_area, lower, upper, interp, mean, std, device_id, idx, num_shards, seed=42 + idx, pad_output=pad_output, output_dtype=output_dtype) pipe.build() pipelines.append(pipe) sample_per_shard = len(pipelines[0]) return DALIGenericIterator( pipelines, ['feed_image', 'feed_label'], size=sample_per_shard) else: resize_shorter = transforms["ResizeImage"].get("resize_short", 256) crop = transforms["CropImage"]["size"] p = fluid.framework.cuda_places()[0] place = fluid.core.Place() place.set_place(p) device_id = place.gpu_device_id() pipe = HybridValPipe( file_root, file_list, batch_size, resize_shorter, crop, interp, mean, std, device_id=device_id, pad_output=pad_output, output_dtype=output_dtype) pipe.build() return DALIGenericIterator( pipe, ['feed_image', 'feed_label'], size=len(pipe), dynamic_shape=True, fill_last_batch=True, last_batch_padded=True) def train(config): return build(config, 'train') def val(config): return build(config, 'valid') def _to_Tensor(lod_tensor, dtype): data_tensor = fluid.layers.create_tensor(dtype=dtype) data = np.array(lod_tensor).astype(dtype) fluid.layers.assign(data, data_tensor) return data_tensor def normalize(feeds, config): image, label = feeds['image'], feeds['label'] img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) image = fluid.layers.cast(image, 'float32') costant = fluid.layers.fill_constant( shape=[1], value=255.0, dtype='float32') image = fluid.layers.elementwise_div(image, costant) mean = fluid.layers.create_tensor(dtype="float32") fluid.layers.assign(input=img_mean.astype("float32"), output=mean) std = fluid.layers.create_tensor(dtype="float32") fluid.layers.assign(input=img_std.astype("float32"), output=std) image = fluid.layers.elementwise_sub(image, mean) image = fluid.layers.elementwise_div(image, std) image.stop_gradient = True feeds['image'] = image return feeds def mix(feeds, config, is_train=True): env = os.environ gpu_num = paddle.fluid.core.get_cuda_device_count() if ( 'PADDLE_TRAINERS_NUM') and ( 'PADDLE_TRAINER_ID' ) not in env else int(env.get('PADDLE_TRAINERS_NUM', 0)) batch_size = config.TRAIN.batch_size // gpu_num images = feeds['image'] label = feeds['label'] # TODO: hard code here, should be fixed! alpha = 0.2 idx = _to_Tensor(np.random.permutation(batch_size), 'int32') lam = np.random.beta(alpha, alpha) images = lam * images + (1 - lam) * paddle.fluid.layers.gather(images, idx) feed = { 'image': images, 'feed_y_a': label, 'feed_y_b': paddle.fluid.layers.gather(label, idx), 'feed_lam': _to_Tensor([lam] * batch_size, 'float32') } return feed if is_train else feeds