#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import math import paddle.fluid as fluid import paddle.fluid.layers.ops as ops from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter __all__ = ['LearningRateBuilder'] class Linear(object): """ Linear learning rate decay Args: lr(float): initial learning rate steps(int): total decay steps end_lr(float): end learning rate, default: 0.0. """ def __init__(self, lr, steps, end_lr=0.0, **kwargs): super(Linear, self).__init__() self.lr = lr self.steps = steps self.end_lr = end_lr def __call__(self): learning_rate = fluid.layers.polynomial_decay( self.lr, self.steps, self.end_lr, power=1) return learning_rate class Cosine(object): """ Cosine learning rate decay lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1) Args: lr(float): initial learning rate step_each_epoch(int): steps each epoch epochs(int): total training epochs """ def __init__(self, lr, step_each_epoch, epochs, **kwargs): super(Cosine, self).__init__() self.lr = lr self.step_each_epoch = step_each_epoch self.epochs = epochs def __call__(self): learning_rate = fluid.layers.cosine_decay( learning_rate=self.lr, step_each_epoch=self.step_each_epoch, epochs=self.epochs) return learning_rate class Piecewise(object): """ Piecewise learning rate decay Args: lr(float): initial learning rate step_each_epoch(int): steps each epoch decay_epochs(list): piecewise decay epochs gamma(float): decay factor """ def __init__(self, lr, step_each_epoch, decay_epochs, gamma=0.1, **kwargs): super(Piecewise, self).__init__() self.bd = [step_each_epoch * e for e in decay_epochs] self.lr = [lr * (gamma**i) for i in range(len(self.bd) + 1)] def __call__(self): learning_rate = fluid.layers.piecewise_decay(self.bd, self.lr) return learning_rate class CosineWarmup(object): """ Cosine learning rate decay with warmup [0, warmup_epoch): linear warmup [warmup_epoch, epochs): cosine decay Args: lr(float): initial learning rate step_each_epoch(int): steps each epoch epochs(int): total training epochs warmup_epoch(int): epoch num of warmup """ def __init__(self, lr, step_each_epoch, epochs, warmup_epoch=5, **kwargs): super(CosineWarmup, self).__init__() self.lr = lr self.step_each_epoch = step_each_epoch self.epochs = epochs self.warmup_epoch = fluid.layers.fill_constant( shape=[1], value=float(warmup_epoch), dtype='float32', force_cpu=True) def __call__(self): global_step = _decay_step_counter() learning_rate = fluid.layers.tensor.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True, name="learning_rate") epoch = ops.floor(global_step / self.step_each_epoch) with fluid.layers.control_flow.Switch() as switch: with switch.case(epoch < self.warmup_epoch): decayed_lr = self.lr * \ (global_step / (self.step_each_epoch * self.warmup_epoch)) fluid.layers.tensor.assign( input=decayed_lr, output=learning_rate) with switch.default(): current_step = global_step - self.warmup_epoch * self.step_each_epoch total_step = ( self.epochs - self.warmup_epoch) * self.step_each_epoch decayed_lr = self.lr * \ (ops.cos(current_step * math.pi / total_step) + 1) / 2 fluid.layers.tensor.assign( input=decayed_lr, output=learning_rate) return learning_rate class ExponentialWarmup(object): """ Exponential learning rate decay with warmup [0, warmup_epoch): linear warmup [warmup_epoch, epochs): Exponential decay Args: lr(float): initial learning rate step_each_epoch(int): steps each epoch decay_epochs(float): decay epochs decay_rate(float): decay rate warmup_epoch(int): epoch num of warmup """ def __init__(self, lr, step_each_epoch, decay_epochs=2.4, decay_rate=0.97, warmup_epoch=5, **kwargs): super(CosineWarmup, self).__init__() self.lr = lr self.step_each_epoch = step_each_epoch self.decay_epochs = decay_epochs * self.step_each_epoch self.decay_rate = decay_rate self.warmup_epoch = fluid.layers.fill_constant( shape=[1], value=float(warmup_epoch), dtype='float32', force_cpu=True) def __call__(self): global_step = _decay_step_counter() learning_rate = fluid.layers.tensor.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True, name="learning_rate") epoch = ops.floor(global_step / self.step_each_epoch) with fluid.layers.control_flow.Switch() as switch: with switch.case(epoch < self.warmup_epoch): decayed_lr = self.lr * \ (global_step / (self.step_each_epoch * self.warmup_epoch)) fluid.layers.tensor.assign( input=decayed_lr, output=learning_rate) with switch.default(): rest_step = global_step - self.warmup_epoch * self.step_each_epoch div_res = ops.floor(rest_step / self.decay_epochs) decayed_lr = self.lr*(self.decay_rate**div_res) fluid.layers.tensor.assign( input=decayed_lr, output=learning_rate) return learning_rate class LearningRateBuilder(): """ Build learning rate variable https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/layers_cn.html Args: function(str): class name of learning rate params(dict): parameters used for init the class """ def __init__(self, function='Linear', params={'lr': 0.1, 'steps': 100, 'end_lr': 0.0}): self.function = function self.params = params def __call__(self): mod = sys.modules[__name__] lr = getattr(mod, self.function)(**self.params)() return lr