# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from paddle.nn import Conv2D, BatchNorm, Linear, Dropout from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D from paddle.nn.initializer import Uniform import math __all__ = [ "Res2Net50_vd_48w_2s", "Res2Net50_vd_26w_4s", "Res2Net50_vd_14w_8s", "Res2Net50_vd_48w_2s", "Res2Net50_vd_26w_6s", "Res2Net50_vd_26w_8s", "Res2Net101_vd_26w_4s", "Res2Net152_vd_26w_4s", "Res2Net200_vd_26w_4s" ] class ConvBNLayer(nn.Layer): def __init__( self, num_channels, num_filters, filter_size, stride=1, groups=1, is_vd_mode=False, act=None, name=None, ): super(ConvBNLayer, self).__init__() self.is_vd_mode = is_vd_mode self._pool2d_avg = AvgPool2D( kernel_size=2, stride=2, padding=0, ceil_mode=True) self._conv = Conv2D( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, weight_attr=ParamAttr(name=name + "_weights"), bias_attr=False) if name == "conv1": bn_name = "bn_" + name else: bn_name = "bn" + name[3:] self._batch_norm = BatchNorm( num_filters, act=act, param_attr=ParamAttr(name=bn_name + '_scale'), bias_attr=ParamAttr(bn_name + '_offset'), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance') def forward(self, inputs): if self.is_vd_mode: inputs = self._pool2d_avg(inputs) y = self._conv(inputs) y = self._batch_norm(y) return y class BottleneckBlock(nn.Layer): def __init__(self, num_channels1, num_channels2, num_filters, stride, scales, shortcut=True, if_first=False, name=None): super(BottleneckBlock, self).__init__() self.stride = stride self.scales = scales self.conv0 = ConvBNLayer( num_channels=num_channels1, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a") self.conv1_list = [] for s in range(scales - 1): conv1 = self.add_sublayer( name + '_branch2b_' + str(s + 1), ConvBNLayer( num_channels=num_filters // scales, num_filters=num_filters // scales, filter_size=3, stride=stride, act='relu', name=name + '_branch2b_' + str(s + 1))) self.conv1_list.append(conv1) self.pool2d_avg = AvgPool2D(kernel_size=3, stride=stride, padding=1) self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_channels2, filter_size=1, act=None, name=name + "_branch2c") if not shortcut: self.short = ConvBNLayer( num_channels=num_channels1, num_filters=num_channels2, filter_size=1, stride=1, is_vd_mode=False if if_first else True, name=name + "_branch1") self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) xs = paddle.split(y, self.scales, 1) ys = [] for s, conv1 in enumerate(self.conv1_list): if s == 0 or self.stride == 2: ys.append(conv1(xs[s])) else: ys.append(conv1(xs[s] + ys[-1])) if self.stride == 1: ys.append(xs[-1]) else: ys.append(self.pool2d_avg(xs[-1])) conv1 = paddle.concat(ys, axis=1) conv2 = self.conv2(conv1) if self.shortcut: short = inputs else: short = self.short(inputs) y = paddle.add(x=short, y=conv2) y = F.relu(y) return y class Res2Net_vd(nn.Layer): def __init__(self, layers=50, scales=4, width=26, class_dim=1000): super(Res2Net_vd, self).__init__() self.layers = layers self.scales = scales self.width = width basic_width = self.width * self.scales supported_layers = [50, 101, 152, 200] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format( supported_layers, layers) if layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] elif layers == 200: depth = [3, 12, 48, 3] num_channels = [64, 256, 512, 1024] num_channels2 = [256, 512, 1024, 2048] num_filters = [basic_width * t for t in [1, 2, 4, 8]] self.conv1_1 = ConvBNLayer( num_channels=3, num_filters=32, filter_size=3, stride=2, act='relu', name="conv1_1") self.conv1_2 = ConvBNLayer( num_channels=32, num_filters=32, filter_size=3, stride=1, act='relu', name="conv1_2") self.conv1_3 = ConvBNLayer( num_channels=32, num_filters=64, filter_size=3, stride=1, act='relu', name="conv1_3") self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1) self.block_list = [] for block in range(len(depth)): shortcut = False for i in range(depth[block]): if layers in [101, 152, 200] and block == 2: if i == 0: conv_name = "res" + str(block + 2) + "a" else: conv_name = "res" + str(block + 2) + "b" + str(i) else: conv_name = "res" + str(block + 2) + chr(97 + i) bottleneck_block = self.add_sublayer( 'bb_%d_%d' % (block, i), BottleneckBlock( num_channels1=num_channels[block] if i == 0 else num_channels2[block], num_channels2=num_channels2[block], num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, scales=scales, shortcut=shortcut, if_first=block == i == 0, name=conv_name)) self.block_list.append(bottleneck_block) shortcut = True self.pool2d_avg = AdaptiveAvgPool2D(1) self.pool2d_avg_channels = num_channels[-1] * 2 stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0) self.out = Linear( self.pool2d_avg_channels, class_dim, weight_attr=ParamAttr( initializer=Uniform(-stdv, stdv), name="fc_weights"), bias_attr=ParamAttr(name="fc_offset")) def forward(self, inputs): y = self.conv1_1(inputs) y = self.conv1_2(y) y = self.conv1_3(y) y = self.pool2d_max(y) for block in self.block_list: y = block(y) y = self.pool2d_avg(y) y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels]) y = self.out(y) return y def Res2Net50_vd_48w_2s(**args): model = Res2Net_vd(layers=50, scales=2, width=48, **args) return model def Res2Net50_vd_26w_4s(**args): model = Res2Net_vd(layers=50, scales=4, width=26, **args) return model def Res2Net50_vd_14w_8s(**args): model = Res2Net_vd(layers=50, scales=8, width=14, **args) return model def Res2Net50_vd_26w_6s(**args): model = Res2Net_vd(layers=50, scales=6, width=26, **args) return model def Res2Net50_vd_26w_8s(**args): model = Res2Net_vd(layers=50, scales=8, width=26, **args) return model def Res2Net101_vd_26w_4s(**args): model = Res2Net_vd(layers=101, scales=4, width=26, **args) return model def Res2Net152_vd_26w_4s(**args): model = Res2Net_vd(layers=152, scales=4, width=26, **args) return model def Res2Net200_vd_26w_4s(**args): model = Res2Net_vd(layers=200, scales=4, width=26, **args) return model