#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import architectures import types from difflib import SequenceMatcher def get_architectures(): """ get all of model architectures """ names = [] for k, v in architectures.__dict__.items(): if isinstance(v, (types.FunctionType, types.ClassType)): names.append(k) return names def similar_architectures(name='', names=[], thresh=0.1, topk=10): """ inferred similar architectures """ scores = [] for idx, n in enumerate(names): if n[:2] == '__': continue score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio() if score > thresh: scores.append((idx, score)) scores.sort(key=lambda x: x[1], reverse=True) similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]] return similar_names