from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle.fluid as fluid from paddle.fluid.initializer import MSRA, ConstantInitializer from paddle.fluid.param_attr import ParamAttr from paddle.fluid.regularizer import L2DecayRegularizer import math __all__ = [ 'ResNeSt50', 'ResNeSt101', 'ResNeSt200', 'ResNeSt269', 'ResNeSt50_fast_1s1x64d', 'ResNeSt50_fast_2s1x64d', 'ResNeSt50_fast_4s1x64d', 'ResNeSt50_fast_1s2x40d', 'ResNeSt50_fast_2s2x40d', 'ResNeSt50_fast_2s2x40d', 'ResNeSt50_fast_4s2x40d', 'ResNeSt50_fast_1s4x24d' ] class ResNeSt(): def __init__(self, layers, radix=1, groups=1, bottleneck_width=64, dilated=False, dilation=1, deep_stem=False, stem_width=64, avg_down=False, rectify_avg=False, avd=False, avd_first=False, final_drop=0.0, last_gamma=False, bn_decay=0.0): self.cardinality = groups self.bottleneck_width = bottleneck_width # ResNet-D params self.inplanes = stem_width * 2 if deep_stem else 64 self.avg_down = avg_down self.last_gamma = last_gamma # ResNeSt params self.radix = radix self.avd = avd self.avd_first = avd_first self.deep_stem = deep_stem self.stem_width = stem_width self.layers = layers self.final_drop = final_drop self.dilated = dilated self.dilation = dilation self.bn_decay = bn_decay self.rectify_avg = rectify_avg def net(self, input, class_dim=1000): if self.deep_stem: x = self.conv_bn_layer( x=input, num_filters=self.stem_width, filters_size=3, stride=2, groups=1, act="relu", name="conv1") x = self.conv_bn_layer( x=x, num_filters=self.stem_width, filters_size=3, stride=1, groups=1, act="relu", name="conv2") x = self.conv_bn_layer( x=x, num_filters=self.stem_width * 2, filters_size=3, stride=1, groups=1, act="relu", name="conv3") else: x = self.conv_bn_layer( x=input, num_filters=64, filters_size=7, stride=2, act="relu", name="conv1") x = fluid.layers.pool2d( input=x, pool_size=3, pool_type="max", pool_stride=2, pool_padding=1) x = self.resnest_layer( x=x, planes=64, blocks=self.layers[0], is_first=False, name="layer1") x = self.resnest_layer( x=x, planes=128, blocks=self.layers[1], stride=2, name="layer2") if self.dilated or self.dilation == 4: x = self.resnest_layer( x=x, planes=256, blocks=self.layers[2], stride=1, dilation=2, name="layer3") x = self.resnest_layer( x=x, planes=512, blocks=self.layers[3], stride=1, dilation=4, name="layer4") elif self.dilation == 2: x = self.resnest_layer( x=x, planes=256, blocks=self.layers[2], stride=2, dilation=1, name="layer3") x = self.resnest_layer( x=x, planes=512, blocks=self.layers[3], stride=1, dilation=2, name="layer4") else: x = self.resnest_layer( x=x, planes=256, blocks=self.layers[2], stride=2, name="layer3") x = self.resnest_layer( x=x, planes=512, blocks=self.layers[3], stride=2, name="layer4") x = fluid.layers.pool2d(input=x, pool_type="avg", global_pooling=True) x = fluid.layers.dropout(x=x, dropout_prob=self.final_drop) stdv = 1.0 / math.sqrt(x.shape[1] * 1.0) x = fluid.layers.fc( input=x, size=class_dim, param_attr=ParamAttr( name="fc_weights", initializer=fluid.initializer.Uniform(-stdv, stdv)), bias_attr=ParamAttr(name="fc_offset")) return x def conv_bn_layer(self, x, num_filters, filters_size, stride=1, groups=1, act=None, name=None): x = fluid.layers.conv2d( input=x, num_filters=num_filters, filter_size=filters_size, stride=stride, padding=(filters_size - 1) // 2, groups=groups, act=None, param_attr=ParamAttr( initializer=MSRA(), name=name + "_weight"), bias_attr=False) x = fluid.layers.batch_norm( input=x, act=act, param_attr=ParamAttr( name=name + "_scale", regularizer=L2DecayRegularizer( regularization_coeff=self.bn_decay)), bias_attr=ParamAttr( name=name + "_offset", regularizer=L2DecayRegularizer( regularization_coeff=self.bn_decay)), moving_mean_name=name + "_mean", moving_variance_name=name + "_variance") return x def rsoftmax(self, x, radix, cardinality): batch, r, h, w = x.shape if radix > 1: x = fluid.layers.reshape( x=x, shape=[ 0, cardinality, radix, int(r * h * w / cardinality / radix) ]) x = fluid.layers.transpose(x=x, perm=[0, 2, 1, 3]) x = fluid.layers.softmax(input=x, axis=1) x = fluid.layers.reshape(x=x, shape=[0, r * h * w]) else: x = fluid.layers.sigmoid(x=x) return x def splat_conv(self, x, in_channels, channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, radix=2, reduction_factor=4, rectify_avg=False, name=None): x = self.conv_bn_layer( x=x, num_filters=channels * radix, filters_size=kernel_size, stride=stride, groups=groups * radix, act="relu", name=name + "_splat1") batch, rchannel = x.shape[:2] if radix > 1: splited = fluid.layers.split(input=x, num_or_sections=radix, dim=1) gap = fluid.layers.sum(x=splited) else: gap = x gap = fluid.layers.pool2d( input=gap, pool_type="avg", global_pooling=True) inter_channels = int(max(in_channels * radix // reduction_factor, 32)) gap = self.conv_bn_layer( x=gap, num_filters=inter_channels, filters_size=1, groups=groups, act="relu", name=name + "_splat2") atten = fluid.layers.conv2d( input=gap, num_filters=channels * radix, filter_size=1, stride=1, padding=0, groups=groups, act=None, param_attr=ParamAttr( name=name + "_splat_weights", initializer=MSRA()), bias_attr=False) atten = self.rsoftmax(x=atten, radix=radix, cardinality=groups) atten = fluid.layers.reshape(x=atten, shape=[-1, atten.shape[1], 1, 1]) if radix > 1: attens = fluid.layers.split( input=atten, num_or_sections=radix, dim=1) out = fluid.layers.sum([ fluid.layers.elementwise_mul( x=split, y=att) for (att, split) in zip(attens, splited) ]) else: out = fluid.layers.elementwise_mul(x, atten) return out def bottleneck(self, x, inplanes, planes, stride=1, radix=1, cardinality=1, bottleneck_width=64, avd=False, avd_first=False, dilation=1, is_first=False, rectify_avg=False, last_gamma=False, name=None): short = x group_width = int(planes * (bottleneck_width / 64.)) * cardinality x = self.conv_bn_layer( x=x, num_filters=group_width, filters_size=1, stride=1, groups=1, act="relu", name=name + "_conv1") if avd and avd_first and (stride > 1 or is_first): x = fluid.layers.pool2d( input=x, pool_size=3, pool_type="avg", pool_stride=stride, pool_padding=1) if radix >= 1: x = self.splat_conv( x=x, in_channels=group_width, channels=group_width, kernel_size=3, stride=1, padding=dilation, dilation=dilation, groups=cardinality, bias=False, radix=radix, rectify_avg=rectify_avg, name=name + "_splatconv") else: x = self.conv_bn_layer( x=x, num_filters=group_width, filters_size=3, stride=1, padding=dilation, dilation=dialtion, groups=cardinality, act="relu", name=name + "_conv2") if avd and avd_first == False and (stride > 1 or is_first): x = fluid.layers.pool2d( input=x, pool_size=3, pool_type="avg", pool_stride=stride, pool_padding=1) x = self.conv_bn_layer( x=x, num_filters=planes * 4, filters_size=1, stride=1, groups=1, act=None, name=name + "_conv3") if stride != 1 or self.inplanes != planes * 4: if self.avg_down: if dilation == 1: short = fluid.layers.pool2d( input=short, pool_size=stride, pool_type="avg", pool_stride=stride, ceil_mode=True) else: short = fluid.layers.pool2d( input=short, pool_size=1, pool_type="avg", pool_stride=1, ceil_mode=True) short = fluid.layers.conv2d( input=short, num_filters=planes * 4, filter_size=1, stride=1, padding=0, groups=1, act=None, param_attr=ParamAttr( name=name + "_weights", initializer=MSRA()), bias_attr=False) else: short = fluid.layers.conv2d( input=short, num_filters=planes * 4, filter_size=1, stride=stride, param_attr=ParamAttr( name=name + "_shortcut_weights", initializer=MSRA()), bias_attr=False) short = fluid.layers.batch_norm( input=short, act=None, param_attr=ParamAttr( name=name + "_shortcut_scale", regularizer=L2DecayRegularizer( regularization_coeff=self.bn_decay)), bias_attr=ParamAttr( name=name + "_shortcut_offset", regularizer=L2DecayRegularizer( regularization_coeff=self.bn_decay)), moving_mean_name=name + "_shortcut_mean", moving_variance_name=name + "_shortcut_variance") return fluid.layers.elementwise_add(x=short, y=x, act="relu") def resnest_layer(self, x, planes, blocks, stride=1, dilation=1, is_first=True, name=None): if dilation == 1 or dilation == 2: x = self.bottleneck( x=x, inplanes=self.inplanes, planes=planes, stride=stride, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=1, is_first=is_first, rectify_avg=self.rectify_avg, last_gamma=self.last_gamma, name=name + "_bottleneck_0") elif dilation == 4: x = self.bottleneck( x=x, inplanes=self.inplanes, planes=planes, stride=stride, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=2, is_first=is_first, rectify_avg=self.rectify_avg, last_gamma=self.last_gamma, name=name + "_bottleneck_0") else: raise RuntimeError("=>unknown dilation size") self.inplanes = planes * 4 for i in range(1, blocks): name = name + "_bottleneck_" + str(i) x = self.bottleneck( x=x, inplanes=self.inplanes, planes=planes, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=dilation, rectify_avg=self.rectify_avg, last_gamma=self.last_gamma, name=name) return x def ResNeSt50(**args): model = ResNeSt( layers=[3, 4, 6, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=False, final_drop=0.0, **args) return model def ResNeSt101(**args): model = ResNeSt( layers=[3, 4, 23, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, final_drop=0.0, **args) return model def ResNeSt200(**args): model = ResNeSt( layers=[3, 24, 36, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, final_drop=0.2, **args) return model def ResNeSt269(**args): model = ResNeSt( layers=[3, 30, 48, 8], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, final_drop=0.2, **args) return model def ResNeSt50_fast_1s1x64d(**args): model = ResNeSt( layers=[3, 4, 6, 3], radix=1, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, final_drop=0.0, **args) return model def ResNeSt50_fast_2s1x64d(**args): model = ResNeSt( layers=[3, 4, 6, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, final_drop=0.0, **args) return model def ResNeSt50_fast_4s1x64d(**args): model = ResNeSt( layers=[3, 4, 6, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, final_drop=0.0, **args) return model def ResNeSt50_fast_1s2x40d(**args): model = ResNeSt( layers=[3, 4, 6, 3], radix=1, groups=2, bottleneck_width=40, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, final_drop=0.0, **args) return model def ResNeSt50_fast_2s2x40d(**args): model = ResNeSt( layers=[3, 4, 6, 3], radix=2, groups=2, bottleneck_width=40, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, final_drop=0.0, **args) return model def ResNeSt50_fast_4s2x40d(**args): model = ResNeSt( layers=[3, 4, 6, 3], radix=4, groups=2, bottleneck_width=40, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, final_drop=0.0, **args) return model def ResNeSt50_fast_1s4x24d(**args): model = ResNeSt( layers=[3, 4, 6, 3], radix=1, groups=4, bottleneck_width=24, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, final_drop=0.0, **args) return model