mode: 'train' ARCHITECTURE: name: 'CSPResNet50' pretrained_model: "" model_save_dir: "./output/" classes_num: 1000 total_images: 1020 save_interval: 1 validate: False valid_interval: 1 epochs: 1 topk: 5 image_shape: [3, 224, 224] LEARNING_RATE: function: 'Cosine' params: lr: 0.0125 OPTIMIZER: function: 'Momentum' params: momentum: 0.9 regularizer: function: 'L2' factor: 0.00001 TRAIN: batch_size: 32 num_workers: 4 file_list: "./dataset/flowers102/train_list.txt" data_dir: "./dataset/flowers102/" shuffle_seed: 0 transforms: - DecodeImage: to_rgb: True to_np: False channel_first: False - RandCropImage: size: 224 - RandFlipImage: flip_code: 1 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: VALID: batch_size: 20 num_workers: 4 file_list: "./dataset/flowers102/val_list.txt" data_dir: "./dataset/flowers102/" shuffle_seed: 0 transforms: - DecodeImage: to_rgb: True to_np: False channel_first: False - ResizeImage: resize_short: 256 - CropImage: size: 224 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: