# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import utils import argparse import numpy as np import paddle.fluid as fluid from ppcls.modeling import architectures def parse_args(): def str2bool(v): return v.lower() in ("true", "t", "1") parser = argparse.ArgumentParser() parser.add_argument("-i", "--image_file", type=str) parser.add_argument("-m", "--model", type=str) parser.add_argument("-p", "--pretrained_model", type=str) parser.add_argument("--use_gpu", type=str2bool, default=True) return parser.parse_args() def create_operators(): size = 224 img_mean = [0.485, 0.456, 0.406] img_std = [0.229, 0.224, 0.225] img_scale = 1.0 / 255.0 decode_op = utils.DecodeImage() resize_op = utils.ResizeImage(resize_short=256) crop_op = utils.CropImage(size=(size, size)) normalize_op = utils.NormalizeImage( scale=img_scale, mean=img_mean, std=img_std) totensor_op = utils.ToTensor() return [decode_op, resize_op, crop_op, normalize_op, totensor_op] def preprocess(fname, ops): data = open(fname, 'rb').read() for op in ops: data = op(data) return data def postprocess(outputs, topk=5): output = outputs[0] prob = np.array(output).flatten() index = prob.argsort(axis=0)[-topk:][::-1].astype('int32') return zip(index, prob[index]) def main(): args = parse_args() operators = create_operators() # assign the place gpu_id = fluid.dygraph.parallel.Env().dev_id place = fluid.CUDAPlace(gpu_id) pre_weights_dict = fluid.load_program_state(args.pretrained_model) with fluid.dygraph.guard(place): net = architectures.__dict__[args.model]() data = preprocess(args.image_file, operators) data = np.expand_dims(data, axis=0) data = fluid.dygraph.to_variable(data) dy_weights_dict = net.state_dict() pre_weights_dict_new = {} for key in dy_weights_dict: weights_name = dy_weights_dict[key].name pre_weights_dict_new[key] = pre_weights_dict[weights_name] net.set_dict(pre_weights_dict_new) net.eval() outputs = net(data) outputs = fluid.layers.softmax(outputs) outputs = outputs.numpy() probs = postprocess(outputs) rank = 1 for idx, prob in probs: print("top{:d}, class id: {:d}, probability: {:.4f}".format( rank, idx, prob)) rank += 1 if __name__ == "__main__": main()