// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include #include "json/json.h" #include "paddle_api.h" // NOLINT #include "include/config_parser.h" #include "include/preprocess_op.h" #include "include/utils.h" #include "include/picodet_postprocess.h" using namespace paddle::lite_api; // NOLINT namespace PPShiTu { // Generate visualization colormap for each class std::vector GenerateColorMap(int num_class); // Visualiztion Detection Result cv::Mat VisualizeResult(const cv::Mat& img, const std::vector& results, const std::vector& lables, const std::vector& colormap, const bool is_rbox); class ObjectDetector { public: explicit ObjectDetector(const Json::Value& config, const std::string& model_dir, int cpu_threads = 1, const int batch_size = 1) { config_.load_config(config); printf("config created\n"); preprocessor_.Init(config_.preprocess_info_); printf("before object detector\n"); if(config["Global"]["det_model_path"].as().empty()){ std::cout << "Please set [det_model_path] in config file" << std::endl; return -1; } LoadModel(config["Global"]["det_model_path"].as(), cpu_threads); printf("create object detector\n"); } // Load Paddle inference model void LoadModel(std::string model_file, int num_theads); // Run predictor void Predict(const std::vector& imgs, const double threshold = 0.5, const int warmup = 0, const int repeats = 1, std::vector* result = nullptr, std::vector* bbox_num = nullptr, std::vector* times = nullptr); // Get Model Label list const std::vector& GetLabelList() const { return config_.label_list_; } private: // Preprocess image and copy data to input buffer void Preprocess(const cv::Mat& image_mat); // Postprocess result void Postprocess(const std::vector mats, std::vector* result, std::vector bbox_num, bool is_rbox); std::shared_ptr predictor_; Preprocessor preprocessor_; ImageBlob inputs_; std::vector output_data_; std::vector out_bbox_num_data_; float threshold_; ConfigPaser config_; }; } // namespace PPShiTu