# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import cv2 import time import sys sys.path.insert(0, ".") from ppcls.utils import logger from tools.infer.utils import parse_args, get_image_list, create_paddle_predictor, preprocess, postprocess class Predictor(object): def __init__(self, args): # HALF precission predict only work when using tensorrt if args.use_fp16 is True: assert args.use_tensorrt is True self.args = args self.paddle_predictor = create_paddle_predictor(args) input_names = self.paddle_predictor.get_input_names() self.input_tensor = self.paddle_predictor.get_input_handle(input_names[ 0]) output_names = self.paddle_predictor.get_output_names() self.output_tensor = self.paddle_predictor.get_output_handle( output_names[0]) def predict(self, batch_input): self.input_tensor.copy_from_cpu(batch_input) self.paddle_predictor.run() batch_output = self.output_tensor.copy_to_cpu() return batch_output def normal_predict(self): image_list = get_image_list(self.args.image_file) batch_input_list = [] img_name_list = [] cnt = 0 for idx, img_path in enumerate(image_list): img = cv2.imread(img_path) if img is None: logger.warning( "Image file failed to read and has been skipped. The path: {}". format(img_path)) continue else: img = img[:, :, ::-1] img = preprocess(img, args) batch_input_list.append(img) img_name = img_path.split("/")[-1] img_name_list.append(img_name) cnt += 1 if cnt % args.batch_size == 0 or (idx + 1) == len(image_list): batch_outputs = self.predict(np.array(batch_input_list)) batch_result_list = postprocess(batch_outputs, self.args.top_k) for number, result_dict in enumerate(batch_result_list): filename = img_name_list[number] clas_ids = result_dict["clas_ids"] scores_str = "[{}]".format(", ".join("{:.2f}".format( r) for r in result_dict["scores"])) print( "File:{}, Top-{} result: class id(s): {}, score(s): {}". format(filename, self.args.top_k, clas_ids, scores_str)) batch_input_list = [] img_name_list = [] def benchmark_predict(self): test_num = 500 test_time = 0.0 for i in range(0, test_num + 10): inputs = np.random.rand(args.batch_size, 3, 224, 224).astype(np.float32) start_time = time.time() batch_output = self.predict(inputs).flatten() if i >= 10: test_time += time.time() - start_time time.sleep(0.01) # sleep for T4 GPU fp_message = "FP16" if args.use_fp16 else "FP32" trt_msg = "using tensorrt" if args.use_tensorrt else "not using tensorrt" print("{0}\t{1}\t{2}\tbatch size: {3}\ttime(ms): {4}".format( args.model, trt_msg, fp_message, args.batch_size, 1000 * test_time / test_num)) if __name__ == "__main__": args = parse_args() assert os.path.exists( args.model_file), "The path of 'model_file' does not exist: {}".format( args.model_file) assert os.path.exists( args.params_file ), "The path of 'params_file' does not exist: {}".format(args.params_file) predictor = Predictor(args) if not args.enable_benchmark: predictor.normal_predict() else: assert args.model is not None predictor.benchmark_predict()