# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import copy import os import numpy as np import nvidia.dali.ops as ops import nvidia.dali.types as types import paddle from nvidia.dali import fn from nvidia.dali.pipeline import Pipeline from nvidia.dali.plugin.paddle import DALIGenericIterator class HybridTrainPipe(Pipeline): def __init__(self, file_root, file_list, batch_size, resize_shorter, crop, min_area, lower, upper, interp, mean, std, device_id, shard_id=0, num_shards=1, random_shuffle=True, num_threads=4, seed=42, pad_output=False, output_dtype=types.FLOAT, dataset='Train'): super(HybridTrainPipe, self).__init__( batch_size, num_threads, device_id, seed=seed) self.input = ops.readers.File( file_root=file_root, file_list=file_list, shard_id=shard_id, num_shards=num_shards, random_shuffle=random_shuffle) # set internal nvJPEG buffers size to handle full-sized ImageNet images # without additional reallocations device_memory_padding = 211025920 host_memory_padding = 140544512 self.decode = ops.decoders.ImageRandomCrop( device='mixed', output_type=types.DALIImageType.RGB, device_memory_padding=device_memory_padding, host_memory_padding=host_memory_padding, random_aspect_ratio=[lower, upper], random_area=[min_area, 1.0], num_attempts=100) self.res = ops.Resize( device='gpu', resize_x=crop, resize_y=crop, interp_type=interp) self.cmnp = ops.CropMirrorNormalize( device="gpu", dtype=output_dtype, output_layout='CHW', crop=(crop, crop), mean=mean, std=std, pad_output=pad_output) self.coin = ops.random.CoinFlip(probability=0.5) self.to_int64 = ops.Cast(dtype=types.DALIDataType.INT64, device="gpu") def define_graph(self): rng = self.coin() jpegs, labels = self.input(name="Reader") images = self.decode(jpegs) images = self.res(images) output = self.cmnp(images.gpu(), mirror=rng) return [output, self.to_int64(labels.gpu())] def __len__(self): return self.epoch_size("Reader") class HybridValPipe(Pipeline): def __init__(self, file_root, file_list, batch_size, resize_shorter, crop, interp, mean, std, device_id, shard_id=0, num_shards=1, random_shuffle=False, num_threads=4, seed=42, pad_output=False, output_dtype=types.FLOAT): super(HybridValPipe, self).__init__( batch_size, num_threads, device_id, seed=seed) self.input = ops.readers.File( file_root=file_root, file_list=file_list, shard_id=shard_id, num_shards=num_shards, random_shuffle=random_shuffle) self.decode = ops.decoders.Image(device="mixed") self.res = ops.Resize( device="gpu", resize_shorter=resize_shorter, interp_type=interp) self.cmnp = ops.CropMirrorNormalize( device="gpu", dtype=output_dtype, output_layout='CHW', crop=(crop, crop), mean=mean, std=std, pad_output=pad_output) self.to_int64 = ops.Cast(dtype=types.DALIDataType.INT64, device="gpu") def define_graph(self): jpegs, labels = self.input(name="Reader") images = self.decode(jpegs) images = self.res(images) output = self.cmnp(images) return [output, self.to_int64(labels.gpu())] def __len__(self): return self.epoch_size("Reader") def dali_dataloader(config, mode, device, num_threads=4, seed=None): assert "gpu" in device, "gpu training is required for DALI" device_id = int(device.split(':')[1]) config_dataloader = config[mode] seed = 42 if seed is None else seed ops = [ list(x.keys())[0] for x in config_dataloader["dataset"]["transform_ops"] ] support_ops_train = [ "DecodeImage", "NormalizeImage", "RandFlipImage", "RandCropImage" ] support_ops_eval = [ "DecodeImage", "ResizeImage", "CropImage", "NormalizeImage" ] if mode.lower() == 'train': assert set(ops) == set( support_ops_train ), "The supported trasform_ops for train_dataset in dali is : {}".format( ",".join(support_ops_train)) else: assert set(ops) == set( support_ops_eval ), "The supported trasform_ops for eval_dataset in dali is : {}".format( ",".join(support_ops_eval)) normalize_ops = [ op for op in config_dataloader["dataset"]["transform_ops"] if "NormalizeImage" in op ][0]["NormalizeImage"] channel_num = normalize_ops.get("channel_num", 3) output_dtype = types.FLOAT16 if normalize_ops.get("output_fp16", False) else types.FLOAT env = os.environ # assert float(env.get('FLAGS_fraction_of_gpu_memory_to_use', 0.92)) < 0.9, \ # "Please leave enough GPU memory for DALI workspace, e.g., by setting" \ # " `export FLAGS_fraction_of_gpu_memory_to_use=0.8`" gpu_num = paddle.distributed.get_world_size() batch_size = config_dataloader["sampler"]["batch_size"] file_root = config_dataloader["dataset"]["image_root"] file_list = config_dataloader["dataset"]["cls_label_path"] interp = 1 # settings.interpolation or 1 # default to linear interp_map = { 0: types.DALIInterpType.INTERP_NN, # cv2.INTER_NEAREST 1: types.DALIInterpType.INTERP_LINEAR, # cv2.INTER_LINEAR 2: types.DALIInterpType.INTERP_CUBIC, # cv2.INTER_CUBIC 3: types.DALIInterpType. INTERP_LANCZOS3, # XXX use LANCZOS3 for cv2.INTER_LANCZOS4 } assert interp in interp_map, "interpolation method not supported by DALI" interp = interp_map[interp] pad_output = channel_num == 4 transforms = { k: v for d in config_dataloader["dataset"]["transform_ops"] for k, v in d.items() } scale = transforms["NormalizeImage"].get("scale", 1.0 / 255) scale = eval(scale) if isinstance(scale, str) else scale mean = transforms["NormalizeImage"].get("mean", [0.485, 0.456, 0.406]) std = transforms["NormalizeImage"].get("std", [0.229, 0.224, 0.225]) mean = [v / scale for v in mean] std = [v / scale for v in std] sampler_name = config_dataloader["sampler"].get("name", "DistributedBatchSampler") assert sampler_name in ["DistributedBatchSampler", "BatchSampler"] if mode.lower() == "train": resize_shorter = 256 crop = transforms["RandCropImage"]["size"] scale = transforms["RandCropImage"].get("scale", [0.08, 1.]) ratio = transforms["RandCropImage"].get("ratio", [3.0 / 4, 4.0 / 3]) min_area = scale[0] lower = ratio[0] upper = ratio[1] if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env and 'FLAGS_selected_gpus' in env: shard_id = int(env['PADDLE_TRAINER_ID']) num_shards = int(env['PADDLE_TRAINERS_NUM']) device_id = int(env['FLAGS_selected_gpus']) pipe = HybridTrainPipe( file_root, file_list, batch_size, resize_shorter, crop, min_area, lower, upper, interp, mean, std, device_id, shard_id, num_shards, num_threads=num_threads, seed=seed + shard_id, pad_output=pad_output, output_dtype=output_dtype) pipe.build() pipelines = [pipe] # sample_per_shard = len(pipe) // num_shards else: pipe = HybridTrainPipe( file_root, file_list, batch_size, resize_shorter, crop, min_area, lower, upper, interp, mean, std, device_id=device_id, shard_id=0, num_shards=1, num_threads=num_threads, seed=seed, pad_output=pad_output, output_dtype=output_dtype) pipe.build() pipelines = [pipe] # sample_per_shard = len(pipelines[0]) return DALIGenericIterator( pipelines, ['data', 'label'], reader_name='Reader') else: resize_shorter = transforms["ResizeImage"].get("resize_short", 256) crop = transforms["CropImage"]["size"] if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env and 'FLAGS_selected_gpus' in env and sampler_name == "DistributedBatchSampler": shard_id = int(env['PADDLE_TRAINER_ID']) num_shards = int(env['PADDLE_TRAINERS_NUM']) device_id = int(env['FLAGS_selected_gpus']) pipe = HybridValPipe( file_root, file_list, batch_size, resize_shorter, crop, interp, mean, std, device_id=device_id, shard_id=shard_id, num_shards=num_shards, num_threads=num_threads, pad_output=pad_output, output_dtype=output_dtype) else: pipe = HybridValPipe( file_root, file_list, batch_size, resize_shorter, crop, interp, mean, std, device_id=device_id, num_threads=num_threads, pad_output=pad_output, output_dtype=output_dtype) pipe.build() return DALIGenericIterator( [pipe], ['data', 'label'], reader_name="Reader")