#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import paddle import paddle.nn as nn class DSHSDLoss(nn.Layer): """ # DSHSD(IEEE ACCESS 2019) # paper [Deep Supervised Hashing Based on Stable Distribution](https://ieeexplore.ieee.org/document/8648432/) # [DSHSD] epoch:70, bit:48, dataset:cifar10-1, MAP:0.809, Best MAP: 0.809 # [DSHSD] epoch:250, bit:48, dataset:nuswide_21, MAP:0.809, Best MAP: 0.815 # [DSHSD] epoch:135, bit:48, dataset:imagenet, MAP:0.647, Best MAP: 0.647 """ def __init__(self, n_class, bit, alpha, multi_label=False): super(DSHSDLoss, self).__init__() self.m = 2 * bit self.alpha = alpha self.multi_label = multi_label self.n_class = n_class self.fc = paddle.nn.Linear(bit, n_class, bias_attr=False) def forward(self, input, label): feature = input["features"] feature = feature.tanh().astype("float32") dist = paddle.sum( paddle.square((paddle.unsqueeze(feature, 1) - paddle.unsqueeze(feature, 0))), axis=2) # label to ont-hot label = paddle.flatten(label) label = paddle.nn.functional.one_hot(label, self.n_class).astype("float32") s = (paddle.matmul(label, label, transpose_y=True) == 0).astype("float32") Ld = (1 - s) / 2 * dist + s / 2 * (self.m - dist).clip(min=0) Ld = Ld.mean() logits = self.fc(feature) if self.multi_label: # multiple labels classification loss Lc = (logits - label * logits + ((1 + (-logits).exp()).log())).sum(axis=1).mean() else: # single labels classification loss Lc = (-paddle.nn.functional.softmax(logits).log() * label).sum(axis=1).mean() return {"dshsdloss": Lc + Ld * self.alpha} class LCDSHLoss(nn.Layer): """ # paper [Locality-Constrained Deep Supervised Hashing for Image Retrieval](https://www.ijcai.org/Proceedings/2017/0499.pdf) # [LCDSH] epoch:145, bit:48, dataset:cifar10-1, MAP:0.798, Best MAP: 0.798 # [LCDSH] epoch:183, bit:48, dataset:nuswide_21, MAP:0.833, Best MAP: 0.834 """ def __init__(self, n_class, _lambda): super(LCDSHLoss, self).__init__() self._lambda = _lambda self.n_class = n_class def forward(self, input, label): feature = input["features"] label = label.astype("float32") # label to ont-hot label = paddle.flatten(label) label = paddle.nn.functional.one_hot(label, self.n_class).astype("float32") s = 2 * (paddle.matmul(label, label, transpose_y=True) > 0).astype("float32") - 1 inner_product = paddle.matmul(feature, feature, transpose_y=True) * 0.5 inner_product = inner_product.clip(min=-50, max=50) L1 = paddle.log(1 + paddle.exp(-s * inner_product)).mean() b = feature.sign() inner_product_ = paddle.matmul(b, b, transpose_y=True) * 0.5 sigmoid = paddle.nn.Sigmoid() L2 = (sigmoid(inner_product) - sigmoid(inner_product_)).pow(2).mean() return {"lcdshloss": L1 + self._lambda * L2}