# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn from ppcls.arch.utils import get_param_attr_dict class FC(nn.Layer): def __init__(self, embedding_size, class_num, **kwargs): super(FC, self).__init__() self.embedding_size = embedding_size self.class_num = class_num weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.XavierNormal()) if 'weight_attr' in kwargs: weight_attr = get_param_attr_dict(kwargs['weight_attr']) bias_attr = None if 'bias_attr' in kwargs: bias_attr = get_param_attr_dict(kwargs['bias_attr']) self.fc = nn.Linear( self.embedding_size, self.class_num, weight_attr=weight_attr, bias_attr=bias_attr) def forward(self, input, label=None): out = self.fc(input) return out