# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # reference: https://arxiv.org/abs/1908.07919 from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle from paddle import nn from paddle import ParamAttr from paddle.nn.functional import upsample from paddle.nn.initializer import Uniform from ppcls.arch.backbone.base.theseus_layer import TheseusLayer, Identity from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url MODEL_URLS = { "HRNet_W18_C": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams", "HRNet_W30_C": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams", "HRNet_W32_C": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams", "HRNet_W40_C": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams", "HRNet_W44_C": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams", "HRNet_W48_C": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams", "HRNet_W64_C": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams" } MODEL_STAGES_PATTERN = {"HRNet": ["st4"]} __all__ = list(MODEL_URLS.keys()) def _create_act(act): if act == "hardswish": return nn.Hardswish() elif act == "relu": return nn.ReLU() elif act is None: return Identity() else: raise RuntimeError( "The activation function is not supported: {}".format(act)) class ConvBNLayer(TheseusLayer): def __init__(self, num_channels, num_filters, filter_size, stride=1, groups=1, act="relu"): super().__init__() self.conv = nn.Conv2D( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, bias_attr=False) self.bn = nn.BatchNorm(num_filters, act=None) self.act = _create_act(act) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.act(x) return x class BottleneckBlock(TheseusLayer): def __init__(self, num_channels, num_filters, has_se, stride=1, downsample=False): super().__init__() self.has_se = has_se self.downsample = downsample self.conv1 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, act="relu") self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=stride, act="relu") self.conv3 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * 4, filter_size=1, act=None) if self.downsample: self.conv_down = ConvBNLayer( num_channels=num_channels, num_filters=num_filters * 4, filter_size=1, act=None) if self.has_se: self.se = SELayer( num_channels=num_filters * 4, num_filters=num_filters * 4, reduction_ratio=16) self.relu = nn.ReLU() def forward(self, x, res_dict=None): residual = x x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) if self.downsample: residual = self.conv_down(residual) if self.has_se: x = self.se(x) x = paddle.add(x=residual, y=x) x = self.relu(x) return x class BasicBlock(nn.Layer): def __init__(self, num_channels, num_filters, has_se=False): super().__init__() self.has_se = has_se self.conv1 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=3, stride=1, act="relu") self.conv2 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=1, act=None) if self.has_se: self.se = SELayer( num_channels=num_filters, num_filters=num_filters, reduction_ratio=16) self.relu = nn.ReLU() def forward(self, x): residual = x x = self.conv1(x) x = self.conv2(x) if self.has_se: x = self.se(x) x = paddle.add(x=residual, y=x) x = self.relu(x) return x class SELayer(TheseusLayer): def __init__(self, num_channels, num_filters, reduction_ratio): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2D(1) self._num_channels = num_channels med_ch = int(num_channels / reduction_ratio) stdv = 1.0 / math.sqrt(num_channels * 1.0) self.fc_squeeze = nn.Linear( num_channels, med_ch, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv))) self.relu = nn.ReLU() stdv = 1.0 / math.sqrt(med_ch * 1.0) self.fc_excitation = nn.Linear( med_ch, num_filters, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv))) self.sigmoid = nn.Sigmoid() def forward(self, x, res_dict=None): residual = x x = self.avg_pool(x) x = paddle.squeeze(x, axis=[2, 3]) x = self.fc_squeeze(x) x = self.relu(x) x = self.fc_excitation(x) x = self.sigmoid(x) x = paddle.unsqueeze(x, axis=[2, 3]) x = residual * x return x class Stage(TheseusLayer): def __init__(self, num_modules, num_filters, has_se=False): super().__init__() self._num_modules = num_modules self.stage_func_list = nn.LayerList() for i in range(num_modules): self.stage_func_list.append( HighResolutionModule( num_filters=num_filters, has_se=has_se)) def forward(self, x, res_dict=None): x = x for idx in range(self._num_modules): x = self.stage_func_list[idx](x) return x class HighResolutionModule(TheseusLayer): def __init__(self, num_filters, has_se=False): super().__init__() self.basic_block_list = nn.LayerList() for i in range(len(num_filters)): self.basic_block_list.append( nn.Sequential(* [ BasicBlock( num_channels=num_filters[i], num_filters=num_filters[i], has_se=has_se) for j in range(4) ])) self.fuse_func = FuseLayers( in_channels=num_filters, out_channels=num_filters) def forward(self, x, res_dict=None): out = [] for idx, xi in enumerate(x): basic_block_list = self.basic_block_list[idx] for basic_block_func in basic_block_list: xi = basic_block_func(xi) out.append(xi) out = self.fuse_func(out) return out class FuseLayers(TheseusLayer): def __init__(self, in_channels, out_channels): super().__init__() self._actual_ch = len(in_channels) self._in_channels = in_channels self.residual_func_list = nn.LayerList() self.relu = nn.ReLU() for i in range(len(in_channels)): for j in range(len(in_channels)): if j > i: self.residual_func_list.append( ConvBNLayer( num_channels=in_channels[j], num_filters=out_channels[i], filter_size=1, stride=1, act=None)) elif j < i: pre_num_filters = in_channels[j] for k in range(i - j): if k == i - j - 1: self.residual_func_list.append( ConvBNLayer( num_channels=pre_num_filters, num_filters=out_channels[i], filter_size=3, stride=2, act=None)) pre_num_filters = out_channels[i] else: self.residual_func_list.append( ConvBNLayer( num_channels=pre_num_filters, num_filters=out_channels[j], filter_size=3, stride=2, act="relu")) pre_num_filters = out_channels[j] def forward(self, x, res_dict=None): out = [] residual_func_idx = 0 for i in range(len(self._in_channels)): residual = x[i] for j in range(len(self._in_channels)): if j > i: xj = self.residual_func_list[residual_func_idx](x[j]) residual_func_idx += 1 xj = upsample(xj, scale_factor=2**(j - i), mode="nearest") residual = paddle.add(x=residual, y=xj) elif j < i: xj = x[j] for k in range(i - j): xj = self.residual_func_list[residual_func_idx](xj) residual_func_idx += 1 residual = paddle.add(x=residual, y=xj) residual = self.relu(residual) out.append(residual) return out class LastClsOut(TheseusLayer): def __init__(self, num_channel_list, has_se, num_filters_list=[32, 64, 128, 256]): super().__init__() self.func_list = nn.LayerList() for idx in range(len(num_channel_list)): self.func_list.append( BottleneckBlock( num_channels=num_channel_list[idx], num_filters=num_filters_list[idx], has_se=has_se, downsample=True)) def forward(self, x, res_dict=None): out = [] for idx, xi in enumerate(x): xi = self.func_list[idx](xi) out.append(xi) return out class HRNet(TheseusLayer): """ HRNet Args: width: int=18. Base channel number of HRNet. has_se: bool=False. If 'True', add se module to HRNet. class_num: int=1000. Output num of last fc layer. Returns: model: nn.Layer. Specific HRNet model depends on args. """ def __init__(self, stages_pattern, width=18, has_se=False, class_num=1000, return_patterns=None, return_stages=None): super().__init__() self.width = width self.has_se = has_se self._class_num = class_num channels_2 = [self.width, self.width * 2] channels_3 = [self.width, self.width * 2, self.width * 4] channels_4 = [ self.width, self.width * 2, self.width * 4, self.width * 8 ] self.conv_layer1_1 = ConvBNLayer( num_channels=3, num_filters=64, filter_size=3, stride=2, act="relu") self.conv_layer1_2 = ConvBNLayer( num_channels=64, num_filters=64, filter_size=3, stride=2, act="relu") self.layer1 = nn.Sequential(* [ BottleneckBlock( num_channels=64 if i == 0 else 256, num_filters=64, has_se=has_se, stride=1, downsample=True if i == 0 else False) for i in range(4) ]) self.conv_tr1_1 = ConvBNLayer( num_channels=256, num_filters=width, filter_size=3) self.conv_tr1_2 = ConvBNLayer( num_channels=256, num_filters=width * 2, filter_size=3, stride=2) self.st2 = Stage( num_modules=1, num_filters=channels_2, has_se=self.has_se) self.conv_tr2 = ConvBNLayer( num_channels=width * 2, num_filters=width * 4, filter_size=3, stride=2) self.st3 = Stage( num_modules=4, num_filters=channels_3, has_se=self.has_se) self.conv_tr3 = ConvBNLayer( num_channels=width * 4, num_filters=width * 8, filter_size=3, stride=2) self.st4 = Stage( num_modules=3, num_filters=channels_4, has_se=self.has_se) # classification num_filters_list = [32, 64, 128, 256] self.last_cls = LastClsOut( num_channel_list=channels_4, has_se=self.has_se, num_filters_list=num_filters_list) last_num_filters = [256, 512, 1024] self.cls_head_conv_list = nn.LayerList() for idx in range(3): self.cls_head_conv_list.append( ConvBNLayer( num_channels=num_filters_list[idx] * 4, num_filters=last_num_filters[idx], filter_size=3, stride=2)) self.conv_last = ConvBNLayer( num_channels=1024, num_filters=2048, filter_size=1, stride=1) self.avg_pool = nn.AdaptiveAvgPool2D(1) stdv = 1.0 / math.sqrt(2048 * 1.0) self.flatten = nn.Flatten(start_axis=1, stop_axis=-1) self.fc = nn.Linear( 2048, class_num, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv))) super().init_res( stages_pattern, return_patterns=return_patterns, return_stages=return_stages) def forward(self, x): x = self.conv_layer1_1(x) x = self.conv_layer1_2(x) x = self.layer1(x) tr1_1 = self.conv_tr1_1(x) tr1_2 = self.conv_tr1_2(x) x = self.st2([tr1_1, tr1_2]) tr2 = self.conv_tr2(x[-1]) x.append(tr2) x = self.st3(x) tr3 = self.conv_tr3(x[-1]) x.append(tr3) x = self.st4(x) x = self.last_cls(x) y = x[0] for idx in range(3): y = paddle.add(x[idx + 1], self.cls_head_conv_list[idx](y)) y = self.conv_last(y) y = self.avg_pool(y) y = self.flatten(y) y = self.fc(y) return y def _load_pretrained(pretrained, model, model_url, use_ssld): if pretrained is False: pass elif pretrained is True: load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) elif isinstance(pretrained, str): load_dygraph_pretrain(model, pretrained) else: raise RuntimeError( "pretrained type is not available. Please use `string` or `boolean` type." ) def HRNet_W18_C(pretrained=False, use_ssld=False, **kwargs): """ HRNet_W18_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `HRNet_W18_C` model depends on args. """ model = HRNet( width=18, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W18_C"], use_ssld) return model def HRNet_W30_C(pretrained=False, use_ssld=False, **kwargs): """ HRNet_W30_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `HRNet_W30_C` model depends on args. """ model = HRNet( width=30, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W30_C"], use_ssld) return model def HRNet_W32_C(pretrained=False, use_ssld=False, **kwargs): """ HRNet_W32_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `HRNet_W32_C` model depends on args. """ model = HRNet( width=32, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W32_C"], use_ssld) return model def HRNet_W40_C(pretrained=False, use_ssld=False, **kwargs): """ HRNet_W40_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `HRNet_W40_C` model depends on args. """ model = HRNet( width=40, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W40_C"], use_ssld) return model def HRNet_W44_C(pretrained=False, use_ssld=False, **kwargs): """ HRNet_W44_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `HRNet_W44_C` model depends on args. """ model = HRNet( width=44, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W44_C"], use_ssld) return model def HRNet_W48_C(pretrained=False, use_ssld=False, **kwargs): """ HRNet_W48_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `HRNet_W48_C` model depends on args. """ model = HRNet( width=48, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W48_C"], use_ssld) return model def HRNet_W60_C(pretrained=False, use_ssld=False, **kwargs): """ HRNet_W60_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `HRNet_W60_C` model depends on args. """ model = HRNet( width=60, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W60_C"], use_ssld) return model def HRNet_W64_C(pretrained=False, use_ssld=False, **kwargs): """ HRNet_W64_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `HRNet_W64_C` model depends on args. """ model = HRNet( width=64, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["HRNet_W64_C"], use_ssld) return model def SE_HRNet_W18_C(pretrained=False, use_ssld=False, **kwargs): """ SE_HRNet_W18_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `SE_HRNet_W18_C` model depends on args. """ model = HRNet( width=18, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], has_se=True, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W18_C"], use_ssld) return model def SE_HRNet_W30_C(pretrained=False, use_ssld=False, **kwargs): """ SE_HRNet_W30_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `SE_HRNet_W30_C` model depends on args. """ model = HRNet( width=30, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], has_se=True, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W30_C"], use_ssld) return model def SE_HRNet_W32_C(pretrained=False, use_ssld=False, **kwargs): """ SE_HRNet_W32_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `SE_HRNet_W32_C` model depends on args. """ model = HRNet( width=32, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], has_se=True, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W32_C"], use_ssld) return model def SE_HRNet_W40_C(pretrained=False, use_ssld=False, **kwargs): """ SE_HRNet_W40_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `SE_HRNet_W40_C` model depends on args. """ model = HRNet( width=40, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], has_se=True, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W40_C"], use_ssld) return model def SE_HRNet_W44_C(pretrained=False, use_ssld=False, **kwargs): """ SE_HRNet_W44_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `SE_HRNet_W44_C` model depends on args. """ model = HRNet( width=44, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], has_se=True, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W44_C"], use_ssld) return model def SE_HRNet_W48_C(pretrained=False, use_ssld=False, **kwargs): """ SE_HRNet_W48_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `SE_HRNet_W48_C` model depends on args. """ model = HRNet( width=48, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], has_se=True, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W48_C"], use_ssld) return model def SE_HRNet_W60_C(pretrained=False, use_ssld=False, **kwargs): """ SE_HRNet_W60_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `SE_HRNet_W60_C` model depends on args. """ model = HRNet( width=60, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], has_se=True, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W60_C"], use_ssld) return model def SE_HRNet_W64_C(pretrained=False, use_ssld=False, **kwargs): """ SE_HRNet_W64_C Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `SE_HRNet_W64_C` model depends on args. """ model = HRNet( width=64, stages_pattern=MODEL_STAGES_PATTERN["HRNet"], has_se=True, **kwargs) _load_pretrained(pretrained, model, MODEL_URLS["SE_HRNet_W64_C"], use_ssld) return model