// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include namespace PaddleClas { void Classifier::LoadModel(const std::string &model_path, const std::string ¶ms_path) { paddle_infer::Config config; config.SetModel(model_path, params_path); if (this->use_gpu_) { config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); if (this->use_tensorrt_) { config.EnableTensorRtEngine( 1 << 20, 1, 3, this->use_fp16_ ? paddle_infer::Config::Precision::kHalf : paddle_infer::Config::Precision::kFloat32, false, false); } } else { config.DisableGpu(); if (this->use_mkldnn_) { config.EnableMKLDNN(); // cache 10 different shapes for mkldnn to avoid memory leak config.SetMkldnnCacheCapacity(10); } config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_); } config.SwitchUseFeedFetchOps(false); // true for multiple input config.SwitchSpecifyInputNames(true); config.SwitchIrOptim(true); config.EnableMemoryOptim(); config.DisableGlogInfo(); this->predictor_ = CreatePredictor(config); } double Classifier::Run(cv::Mat &img, std::vector *times) { cv::Mat srcimg; cv::Mat resize_img; img.copyTo(srcimg); auto preprocess_start = std::chrono::steady_clock::now(); this->resize_op_.Run(img, resize_img, this->resize_short_size_); this->crop_op_.Run(resize_img, this->crop_size_); this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_); std::vector input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); this->permute_op_.Run(&resize_img, input.data()); auto input_names = this->predictor_->GetInputNames(); auto input_t = this->predictor_->GetInputHandle(input_names[0]); input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); auto preprocess_end = std::chrono::system_clock::now(); auto infer_start = std::chrono::system_clock::now(); input_t->CopyFromCpu(input.data()); this->predictor_->Run(); std::vector out_data; auto output_names = this->predictor_->GetOutputNames(); auto output_t = this->predictor_->GetOutputHandle(output_names[0]); std::vector output_shape = output_t->shape(); int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, std::multiplies()); out_data.resize(out_num); output_t->CopyToCpu(out_data.data()); auto infer_end = std::chrono::system_clock::now(); auto postprocess_start = std::chrono::system_clock::now(); int maxPosition = max_element(out_data.begin(), out_data.end()) - out_data.begin(); auto postprocess_end = std::chrono::system_clock::now(); // std::chrono::duration preprocess_diff = preprocess_end - // preprocess_start; // times->push_back(double(preprocess_diff.count() * 1000)); std::chrono::duration inference_diff = infer_end - infer_start; double inference_cost_time = double(inference_diff.count() * 1000); times->push_back(inference_cost_time); std::chrono::duration postprocess_diff = postprocess_end - postprocess_start; times->push_back(double(postprocess_diff.count() * 1000)); std::cout << "result: " << std::endl; std::cout << "\tclass id: " << maxPosition << std::endl; std::cout << std::fixed << std::setprecision(10) << "\tscore: " << double(out_data[maxPosition]) << std::endl; return inference_cost_time; } } // namespace PaddleClas