# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import os import numpy as np from nvidia.dali.pipeline import Pipeline import nvidia.dali.ops as ops import nvidia.dali.types as types from nvidia.dali.plugin.paddle import DALIGenericIterator import paddle from paddle import fluid class HybridTrainPipe(Pipeline): def __init__(self, file_root, file_list, batch_size, resize_shorter, crop, min_area, lower, upper, interp, mean, std, device_id, shard_id=0, num_shards=1, random_shuffle=True, num_threads=4, seed=42): super(HybridTrainPipe, self).__init__( batch_size, num_threads, device_id, seed=seed) self.input = ops.FileReader( file_root=file_root, file_list=file_list, shard_id=shard_id, num_shards=num_shards, random_shuffle=random_shuffle) # set internal nvJPEG buffers size to handle full-sized ImageNet images # without additional reallocations device_memory_padding = 211025920 host_memory_padding = 140544512 self.decode = ops.ImageDecoderRandomCrop( device='mixed', output_type=types.RGB, device_memory_padding=device_memory_padding, host_memory_padding=host_memory_padding, random_aspect_ratio=[lower, upper], random_area=[min_area, 1.0], num_attempts=100) self.res = ops.Resize( device='gpu', resize_x=crop, resize_y=crop, interp_type=interp) self.cmnp = ops.CropMirrorNormalize( device="gpu", output_dtype=types.FLOAT, output_layout=types.NCHW, crop=(crop, crop), image_type=types.RGB, mean=mean, std=std) self.coin = ops.CoinFlip(probability=0.5) self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu") def define_graph(self): rng = self.coin() jpegs, labels = self.input(name="Reader") images = self.decode(jpegs) images = self.res(images) output = self.cmnp(images.gpu(), mirror=rng) return [output, self.to_int64(labels.gpu())] def __len__(self): return self.epoch_size("Reader") class HybridValPipe(Pipeline): def __init__(self, file_root, file_list, batch_size, resize_shorter, crop, interp, mean, std, device_id, shard_id=0, num_shards=1, random_shuffle=False, num_threads=4, seed=42): super(HybridValPipe, self).__init__( batch_size, num_threads, device_id, seed=seed) self.input = ops.FileReader( file_root=file_root, file_list=file_list, shard_id=shard_id, num_shards=num_shards, random_shuffle=random_shuffle) self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB) self.res = ops.Resize( device="gpu", resize_shorter=resize_shorter, interp_type=interp) self.cmnp = ops.CropMirrorNormalize( device="gpu", output_dtype=types.FLOAT, output_layout=types.NCHW, crop=(crop, crop), image_type=types.RGB, mean=mean, std=std) self.to_int64 = ops.Cast(dtype=types.INT64, device="gpu") def define_graph(self): jpegs, labels = self.input(name="Reader") images = self.decode(jpegs) images = self.res(images) output = self.cmnp(images) return [output, self.to_int64(labels.gpu())] def __len__(self): return self.epoch_size("Reader") def build(settings, mode='train'): env = os.environ assert settings.get('use_gpu', True) == True, "gpu training is required for DALI" #assert not settings.get('use_mix'), "mixup is not supported by DALI reader" assert not settings.get( 'use_aa'), "auto augment is not supported by DALI reader" assert float(env.get('FLAGS_fraction_of_gpu_memory_to_use', 0.92)) < 0.9, \ "Please leave enough GPU memory for DALI workspace, e.g., by setting" \ " `export FLAGS_fraction_of_gpu_memory_to_use=0.8`" file_root = settings.TRAIN.data_dir bs = settings.TRAIN.batch_size if mode == 'train' else settings.VALID.batch_size print(bs, paddle.fluid.core.get_cuda_device_count()) assert bs % paddle.fluid.core.get_cuda_device_count() == 0, \ "batch size must be multiple of number of devices" batch_size = bs // paddle.fluid.core.get_cuda_device_count() image_mean = [0.485, 0.456, 0.406] image_std = [0.229, 0.224, 0.225] mean = [v * 255 for v in image_mean] std = [v * 255 for v in image_std] crop = 224 # settings.crop_size resize_shorter = 256 # settings.resize_short_size min_area = 0.08 # settings.lower_scale lower = 3. / 4. # settings.lower_ratio upper = 4. / 3. # settings.upper_ratio interp = 1 # settings.interpolation or 1 # default to linear interp_map = { 0: types.INTERP_NN, # cv2.INTER_NEAREST 1: types.INTERP_LINEAR, # cv2.INTER_LINEAR 2: types.INTERP_CUBIC, # cv2.INTER_CUBIC 4: types.INTERP_LANCZOS3, # XXX use LANCZOS3 for cv2.INTER_LANCZOS4 } assert interp in interp_map, "interpolation method not supported by DALI" interp = interp_map[interp] if mode != 'train': p = fluid.framework.cuda_places()[0] place = fluid.core.Place() place.set_place(p) device_id = place.gpu_device_id() file_list = os.path.join(file_root, 'val_list.txt') if not os.path.exists(file_list): file_list = None file_root = os.path.join(file_root, 'val') pipe = HybridValPipe( file_root, file_list, batch_size, resize_shorter, crop, interp, mean, std, device_id=device_id) pipe.build() return DALIGenericIterator( pipe, ['feed_image', 'feed_label'], size=len(pipe), dynamic_shape=True, fill_last_batch=False, last_batch_padded=True) file_list = os.path.join(file_root, 'train_list.txt') if not os.path.exists(file_list): file_list = None file_root = os.path.join(file_root, 'train') if 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env: shard_id = int(env['PADDLE_TRAINER_ID']) num_shards = int(env['PADDLE_TRAINERS_NUM']) device_id = int(env['FLAGS_selected_gpus']) pipe = HybridTrainPipe( file_root, file_list, batch_size, resize_shorter, crop, min_area, lower, upper, interp, mean, std, device_id, shard_id, num_shards, seed=42 + shard_id) pipe.build() pipelines = [pipe] sample_per_shard = len(pipe) // num_shards else: pipelines = [] places = fluid.framework.cuda_places() num_shards = len(places) for idx, p in enumerate(places): place = fluid.core.Place() place.set_place(p) device_id = place.gpu_device_id() pipe = HybridTrainPipe( file_root, file_list, batch_size, resize_shorter, crop, min_area, lower, upper, interp, mean, std, device_id, idx, num_shards, seed=42 + idx) pipe.build() pipelines.append(pipe) sample_per_shard = len(pipelines[0]) return DALIGenericIterator( pipelines, ['feed_image', 'feed_label'], size=sample_per_shard) def train(settings): return build(settings, 'train') def val(settings): return build(settings, 'val') def _to_Tensor(lod_tensor, dtype): data_tensor = fluid.layers.create_tensor(dtype=dtype) data = np.array(lod_tensor).astype(dtype) fluid.layers.assign(data, data_tensor) return data_tensor def post_mix(settings, batch): batch_size = settings.TRAIN.batch_size // paddle.fluid.core.get_cuda_device_count( ) batch_imgs = _to_Tensor(batch[0]['feed_image'], 'float32') batch_label = _to_Tensor(batch[0]['feed_label'], 'int64') alpha = 0.2 idx = _to_Tensor(np.random.permutation(batch_size), 'int32') lam = np.random.beta(alpha, alpha) batch_imgs = lam * batch_imgs + (1 - lam) * paddle.fluid.layers.gather( batch_imgs, idx) # print(type(batch_label)) feed = [{ 'feed_image': batch_imgs, 'feed_y_a': batch_label, 'feed_y_b': paddle.fluid.layers.gather(batch_label, idx), 'feed_lam': _to_Tensor([lam] * batch_size, 'float32') }] return feed def post_mix_numpy(settings, batch): batch_size = settings.TRAIN.batch_size // paddle.fluid.core.get_cuda_device_count( ) batch_imgs = np.array(batch[0]['feed_image']) batch_label = np.array(batch[0]['feed_label']) alpha = 0.2 idx = np.random.permutation(batch_size) lam = np.random.beta(alpha, alpha) batch_imgs = lam * batch_imgs + (1 - lam) * batch_imgs[idx] feed = [{ 'feed_image': batch_imgs, 'feed_y_a': batch_label, 'feed_y_b': batch_label[idx], 'feed_lam': np.array([lam] * batch_size).astype('float32') }] return feed