# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import paddle.fluid as fluid from paddle.fluid.incubate.fleet.base import role_maker from paddle.fluid.incubate.fleet.collective import fleet from ppcls.data import Reader from ppcls.utils.config import get_config from ppcls.utils.save_load import init_model, save_model from ppcls.utils import logger import program def parse_args(): parser = argparse.ArgumentParser("PaddleClas train script") parser.add_argument( '-c', '--config', type=str, default='configs/ResNet/ResNet50.yaml', help='config file path') parser.add_argument( '-o', '--override', action='append', default=[], help='config options to be overridden') args = parser.parse_args() return args def main(args): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) config = get_config(args.config, overrides=args.override, show=True) # assign the place gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0)) place = fluid.CUDAPlace(gpu_id) # startup_prog is used to do some parameter init work, # and train prog is used to hold the network startup_prog = fluid.Program() train_prog = fluid.Program() best_top1_acc_list = (0.0, -1) # (top1_acc, epoch_id) train_dataloader, train_fetchs = program.build( config, train_prog, startup_prog, is_train=True) if config.validate: valid_prog = fluid.Program() valid_dataloader, valid_fetchs = program.build( config, valid_prog, startup_prog, is_train=False) # clone to prune some content which is irrelevant in valid_prog valid_prog = valid_prog.clone(for_test=True) # create the "Executor" with the statement of which place exe = fluid.Executor(place=place) # only run startup_prog once to init exe.run(startup_prog) # load model from checkpoint or pretrained model init_model(config, train_prog, exe) train_reader = Reader(config, 'train')() train_dataloader.set_sample_list_generator(train_reader, place) if config.validate: valid_reader = Reader(config, 'valid')() valid_dataloader.set_sample_list_generator(valid_reader, place) compiled_valid_prog = program.compile(config, valid_prog) compiled_train_prog = fleet.main_program for epoch_id in range(config.epochs): # 1. train with train dataset program.run(train_dataloader, exe, compiled_train_prog, train_fetchs, epoch_id, 'train') if int(os.getenv("PADDLE_TRAINER_ID", 0)) == 0: # 2. validate with validate dataset if config.validate and epoch_id % config.valid_interval == 0: if config.get('use_ema'): logger.info(logger.coloring("EMA validate start...")) with train_fetchs('ema').apply(exe): top1_acc = program.run(valid_dataloader, exe, compiled_valid_prog, valid_fetchs, epoch_id, 'valid') logger.info(logger.coloring("EMA validate over!")) top1_acc = program.run(valid_dataloader, exe, compiled_valid_prog, valid_fetchs, epoch_id, 'valid') if top1_acc > best_top1_acc_list[0]: best_top1_acc_list = (top1_acc, epoch_id) logger.info("Best top1 acc: {}, in epoch: {}".format( *best_top1_acc_list)) model_path = os.path.join(config.model_save_dir, config.ARCHITECTURE["name"]) save_model(train_prog, model_path, "best_model") # 3. save the persistable model if epoch_id % config.save_interval == 0: model_path = os.path.join(config.model_save_dir, config.ARCHITECTURE["name"]) save_model(train_prog, model_path, epoch_id) if __name__ == '__main__': args = parse_args() main(args)