# Introduction to Image Classification Model Kunlun (Continuously updated)
------
## Contents
- [1. Foreword](#1)
- [2. Training of Kunlun](#2)
- [2.1 ResNet50](#2.1)
- [2.2 MobileNetV3](#2.2)
- [2.3 HRNet](#2.3)
- [2.4 VGG16/19](#2.4)
## 1. Forword
- This document describes the models currently supported by Kunlun and how to train these models on Kunlun devices. To install PaddlePaddle that supports Kunlun, please refer to [install_kunlun](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/09_hardware_support/xpu_docs/paddle_install_cn.html)
## 2. Training of Kunlun
- See [quick_start](../quick_start/quick_start_classification_new_user_en.md)for data sources and pre-trained models. The training effect of Kunlun is aligned with CPU/GPU.
### 2.1 ResNet50
- Command:
```
python3.7 ppcls/static/train.py \
-c ppcls/configs/quick_start/kunlun/ResNet50_vd_finetune_kunlun.yaml \
-o use_gpu=False \
-o use_xpu=True \
-o is_distributed=False
```
The difference with cpu/gpu training lies in the addition of -o use_xpu=True, indicating that the execution is on a Kunlun device.
### 2.2 MobileNetV3
- Command:
```
python3.7 ppcls/static/train.py \
-c ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \
-o use_gpu=False \
-o use_xpu=True \
-o is_distributed=False
```
### 2.3 HRNet
- Command:
```
python3.7 ppcls/static/train.py \
-c ppcls/configs/quick_start/kunlun/HRNet_W18_C_finetune_kunlun.yaml \
-o is_distributed=False \
-o use_xpu=True \
-o use_gpu=False
```
### 2.4 VGG16/19
- Command:
```
python3.7 ppcls/static/train.py \
-c ppcls/configs/quick_start/VGG16_finetune_kunlun.yaml \
-o use_gpu=False \
-o use_xpu=True \
-o is_distributed=False
python3.7 ppcls/static/train.py \
-c ppcls/configs/quick_start/VGG19_finetune_kunlun.yaml \
-o use_gpu=False \
-o use_xpu=True \
-o is_distributed=False
```