# Introduction to Image Classification Model Kunlun (Continuously updated) ------ ## Contents - [1. Foreword](#1) - [2. Training of Kunlun](#2) - [2.1 ResNet50](#2.1) - [2.2 MobileNetV3](#2.2) - [2.3 HRNet](#2.3) - [2.4 VGG16/19](#2.4) ## 1. Forword - This document describes the models currently supported by Kunlun and how to train these models on Kunlun devices. To install PaddlePaddle that supports Kunlun, please refer to [install_kunlun](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/09_hardware_support/xpu_docs/paddle_install_cn.html) ## 2. Training of Kunlun - See [quick_start](../quick_start/quick_start_classification_new_user_en.md)for data sources and pre-trained models. The training effect of Kunlun is aligned with CPU/GPU. ### 2.1 ResNet50 - Command: ``` python3.7 ppcls/static/train.py \ -c ppcls/configs/quick_start/kunlun/ResNet50_vd_finetune_kunlun.yaml \ -o use_gpu=False \ -o use_xpu=True \ -o is_distributed=False ``` The difference with cpu/gpu training lies in the addition of -o use_xpu=True, indicating that the execution is on a Kunlun device. ### 2.2 MobileNetV3 - Command: ``` python3.7 ppcls/static/train.py \ -c ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \ -o use_gpu=False \ -o use_xpu=True \ -o is_distributed=False ``` ### 2.3 HRNet - Command: ``` python3.7 ppcls/static/train.py \ -c ppcls/configs/quick_start/kunlun/HRNet_W18_C_finetune_kunlun.yaml \ -o is_distributed=False \ -o use_xpu=True \ -o use_gpu=False ``` ### 2.4 VGG16/19 - Command: ``` python3.7 ppcls/static/train.py \ -c ppcls/configs/quick_start/VGG16_finetune_kunlun.yaml \ -o use_gpu=False \ -o use_xpu=True \ -o is_distributed=False python3.7 ppcls/static/train.py \ -c ppcls/configs/quick_start/VGG19_finetune_kunlun.yaml \ -o use_gpu=False \ -o use_xpu=True \ -o is_distributed=False ```